Share:


Comparative analysis for methods of building digital elevation models from topographic maps using geoinformation technologies

    Vadim Belenok   Affiliation
    ; Yuriy Velikodsky Affiliation
    ; Oleksandr Nikolaienko   Affiliation
    ; Nataliia Rul Affiliation
    ; Sergiy Kryachok Affiliation
    ; Tetiana Malik Affiliation

Abstract

The article considers the question of estimating the accuracy of interpolation methods for building digital elevation models using Soviet topographic maps. The territory of the Kursk region of the Russian Federation was used as the study area, because it is located on the Central Russian Upland and characterized by the complex structure of the vertical and horizontal dissection of the relief. Contour lines automatically obtained using a Python algorithm were used as the initial elevation data to build a digital elevation model. Digital elevation models obtained by thirteen different interpolation methods in ArcGIS and Surfer software were built and analyzed. Special attention is paid to the ANUDEM method, which allows to obtain hydrologically correct digital elevation models. Recommendations for the use of one or another method of interpolation are given. The results can be useful for professionals who use topographic maps in their work and deals with the design using digital elevation models.

Keyword : digital elevation model, interpolation methods, ANUDEM, soviet topographic maps, contours, automatic contours vectorization

How to Cite
Belenok, V., Velikodsky, Y., Nikolaienko, O., Rul, N., Kryachok, S., & Malik, T. (2021). Comparative analysis for methods of building digital elevation models from topographic maps using geoinformation technologies. Geodesy and Cartography, 47(4), 191-199. https://doi.org/10.3846/gac.2021.13208
Published in Issue
Dec 13, 2021
Abstract Views
568
PDF Downloads
438
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ajvazi, B., & Czimber, K. (2019). Comparative analysis of different DEM interpolation methods in GIS: Case study of Rahovec, Kosovo. Geodesy and Cartography, 45(1), 43–48. https://doi.org/10.3846/gac.2019.7921

ANU Fenner School of Environment and Society and Geoscience Australia. (2008). GEODATA 9 second DEM and D8 digital elevation model and flow direction grid, user guide. Geoscience Australia, Canberra.

Arun, P. V. (2013). A comparative analysis of different DEM interpolation methods. The Egyptian Journal of Remote Sensing and Space Sciences, 16, 133–139. https://doi.org/10.1016/j.ejrs.2013.09.001

Curebal, I., Efe, R., Ozdemir, H., Soykan, A., & Sönmez, S. (2015). Gis-based approach for flood analysis: Case study of keçidere flash flood event (Turkey). Geocarto International, 31(4), 355–366. https://doi.org/10.1080/10106049.2015.1047411

EarthExplorer. (n.d.). Home. https://earthexplorer.usgs.gov/

Hutchinson, M. F. (1988). Calculation of hydrologically sound digital elevation models. In Proceedings of the 3rd International Symposium on Spatial Data Handling (pp. 117–133). Sydney, Australia.

Hutchinson, M. F. (1989). A new method for gridding elevation and stream line data with automatic removal of pits. Journal of Hydrology, 106, 211–232. https://doi.org/10.1016/0022-1694(89)90073-5

Hutchinson, M. F., Stein, J. A., Stein, J. L., & Xu, T. (2009, July 13–17). Locally adaptive gridding of noisy high resolution topographic data [Conference Proceedings]. 18th World IMACS / MODSIM Congress, Cairns, Australia.

Hutsul, T., & Smirnov, Y. (2017). Comparative accuracy assessment of global DTM and DTM generated from soviet topographic maps for the purposes of road planning. Geodesy and Cartography, 43(4), 173–181. https://doi.org/10.3846/20296991.2017.1412638

Johnston, K., VerHoef, J., Krivoruchko, K., & Neil, L. (2001). Using ArcGIS™ Geostatistical Analyst. ESRI™, US.

Liashenko, D., Belenok, V., Spitsa, R., Pavlyuk, D., & Boiko, O. (2020, November 10–13). Landslide GIS modelling with QGIS software. In XIVth International Scientific Conference on Monitoring of Geological Processes and Ecological Condition of the Environment. European Association of Geoscientists & Engineers, Kyiv. https://doi.org/10.3997/2214-4609.202056069

Pivnyak, G. G., Busyigin, B. S., Korotenko, G. M., & Koroten­ko, L. M. (2014). Anglo-russko-ukrainskiy slovar po GIS i DZZ: ucheb. posobie. Ministerstvo obrazovaniya i nauki Ukrainyi, Natcionalnyi gornyi universitet (In Russian).

Rul, N. V., Velikodsky, Yu. I., & Zatcerkovnyi, V. I. (2018, May 14–17). The algorithm of automatic vectorization of contours for constructing digital elevation models [Conference Proceedings]. 17th International Conference on Geoinformatics: Theoretical and Applied Aspects. Institute of Geology of Taras Shevchenko Kyiv National University, Kyiv. https://doi.org/10.3997/2214-4609.201801840

Salari, A., Zakaria, M., Nielsen, C. C., & Boyce, M. S. (2014). Quantifying tropical wetlands using field surveys, spatial statistics and remote sensing. Wetlands, 34, 565–574. https://doi.org/10.1007/s13157-014-0524-3

Salekin, S., Burgess, J. H., Morgenroth, J., Mason, E. G., & Meason, D. F. (2018). A comparative study of three non-geostatistical methods for optimising digital elevation model interpolation. ISPRS International Journal of Geo-Information, 7(8), 300. https://doi.org/10.3390/ijgi7080300

Shihov, A. N., Cherepanova, E. S., & Pyankov, S. V. (2017). Geoinformatsionnyie sistemyi: metodyi prostranstvennogo analiza: ucheb. posobie. Permskii gosudarstvennyi natcionalnyi issledovatelskii universitet (in Russian).

Stein, J. L. (2006). A continental landscape framework for systematic conservation planning for Australian rivers and streams [PhD Thesis]. Centre for Resource and Environmental Studies, Australian National University.

Tagelsir, M. G. (2010). Handbook of research on hydroinformatics: Technologies, theories and applications. IGI Global.

Tan, Q., & Xu, X. (2014). Comparative analysis of spatial interpolation methods: An experimental study. Sensors & Transducers, 165(2).

United States Geological Survey. (n.d.). What are digital elevation models (DEMs)? https://www.usgs.gov/faqs/what-are-digital-elevation-models-dems?qt-news_science_products=0#qt-news_science_products

Voitenko, S. P. (2003). Matematychna obrobka heodezychnykh vymiriv. Teoriia pokhybok vymiriv: Navchalnyi posibnyk. Kyivskyi natsionalnyi universytet budivnytstva i arkhitektury (in Ukrainian).

Wood, J. D. (1996). The geomorphologic characterization of Digital Elevation Models [PhD Thesis]. University of Leicester, Leicester, England.

Yakovchenko, S. G. (2007). Sozdanie geoinformatsionnyih sistem v inzhenernoy gidrologii [PhD Thesis]. Barnaul (in Russian).

Yang, C. S., Kao S.-P., Lee, F. B., & Hung, P.-S. (2004). Twelve different interpolation methods: A case study of Surfer 8.0. https://www.isprs.org/proceedings/xxxv/congress/comm2/papers/231.pdf