Share:


Calibration of the low-cost UAV camera on a spatial test field

    Szymon Sobura   Affiliation

Abstract

For several years, the widening range of applications of unmanned aerial vehicles can be noticed not only in the literature review but also in the market of services offered – also in the geodetic sector. While there is a wide range of professional UAVs for aerial mapping tasks, these platforms are expensive. In this study, it was checked whether the calibration of a low-cost drone camera allows for obtaining an accuracy acceptable for photogrammetric studies. For this purpose, a spatial test field was designed on which a multivariate calibration of the UAV camera and control of the obtained results were carried out. Using the elements of the camera’s internal orientation obtained during the calibration process, it was not possible to achieve high accuracy of photogrammetric measurements on control images. This may indicate a problem with the repeatability of determining the elements of internal orientation of the analyzed camera, and thus with the instability of the autofocus system. Nevertheless, the use of the obtained results from the camera calibration as precise approximations of the elements of the camera’s internal orientation had a positive effect on the solution of the image network using the bundle adjustment and the fitting of the spatial model to the ground control points. In addition, the UAV flight over the created spatial test field allowed for a reliable assessment of the possibilities and accuracy that can be obtained on the basis of images from a low-cost drone.

Keyword : UAV, calibration camera, bundle adjustment, test field, self-calibration, photogrammetric measurements

How to Cite
Sobura, S. (2022). Calibration of the low-cost UAV camera on a spatial test field . Geodesy and Cartography, 48(3), 134–143. https://doi.org/10.3846/gac.2022.16215
Published in Issue
Oct 4, 2022
Abstract Views
400
PDF Downloads
412
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aldelgawy, M., & Abu-Qasmieh, I. (2021). Calibration of smart­phone’s rear dual camera system. Geodesy and Cartography, 47(4), 162–169. https://doi.org/10.3846/gac.2021.13434

Bakuła, K., & Ostrowski, W. (2012). The application of non-metric digital camera in aerial photogrammetry on selected examples. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 24, 11–20.

Cramer, M., Przybilla, H.-J., & Zurhorst, A. (2017). UAV cameras: Overview and Geometric Calibration Benchmark. The International Archives of Photogrammetry, Remote Sensing Spatial Information Sciences, XLII-2/W6, 85–92. https://doi.org/10.5194/isprs-archives-XLII-2-W6-85-2017

Fryskowska, A., Kedzierski, M., Grochala, A., & Braula, A. (2016). Calibration of low cost RGB and NIR UAV cameras. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B1, 817–821. https://doi.org/10.5194/isprsarchives-XLI-B1-817-2016

Łojek, M., & Łyjak, D. (2022). Kalibracja kamer UAV na terenowym polu testowym [master thesis]. Politechnika Świętokrzyska, Kielce (in Polish).

Oniga, V.-E., Pfeifer, N., & Loghin, A.-M. (2018). 3D Calibration test-field for digital cameras mounted on Unmanned Aerial Systems (UAS). Remote Sensing, 10(12), 2017. https://doi.org/10.3390/rs10122017

Pérez, M., Agüera, F., & Carvajal, F. (2011). Digital camera calibration using images taken from an unmanned aerial vehicle. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/C22, 167–171. https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-167-2011

Pyka, K., & Myszka, P. (2015). Status fotogrametrii w ustawie prawo geodezyjne i kartograficzne i przepisach powiązanych. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 27, 97–107 (in Polish). https://doi.org/10.14681/afkit.2015.007

Radford, C. R., & Bevan, G. (2019). A calibration workflow for “prosumer” UAV cameras. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W13, 553–558. https://doi.org/10.5194/isprs-archives-XLII-2-W13-553-2019

Sampath, A., Moe, D., & Christopherson, J. (2012). Two methods for self calibration of digital camera. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B1, 261–266. https://doi.org/10.5194/isprsarchives-XXXIX-B1-261-2012

Sobura, S. (2021). Calibration of non-metric UAV camera using different test fields. Geodesy and Cartography, 47(3), 111–117. https://doi.org/10.3846/gac.2021.13080

Tokarczyk, R. (2022, September 20). Kalibracja kamer bliskiego zasiegu [slides]. Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology (in Polish). https://www.yumpu.com/xx/document/view/47489720/kalibracja-kamer-bliskiego-zasiagu-agh

Tokarczyk, R., & Boroń, A. (2020). Badanie cyfrowych aparatów fotograficznych dla zastosowań fotogrametrycznych. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 10, 63-1–63-10 (in Polish).

Wiącek, P., & Pyka, K. (2019). The test field for UAV accuracy assessments. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-1/W2, 67–73. https://doi.org/10.5194/isprs-archives-XLII-1-W2-67-2019

Wiącek, P. (2020). The database for multifactorial UAV accuracy assessments. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B5-2020, 163–172. https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-163-2020