Share:


Identification of geological units in Alborz Mountain in Iran using Landsat-9 image

    Komeil Rokni Affiliation
    ; Davood Akbari Affiliation

Abstract

In the present study, the suitability of principal components analysis (PCA) based techniques was evaluated for identification of geological units from Landsat-9 satellite imagery. In this respect, a scene of Landsat-9 operational land imager 2 (OLI–2) data of the year 2023 was acquired and a geological map scale 1:100000 of the study area was used as the reference. The results indicated suitability of the PCA based techniques for discrimination of geological units from Landsat-9 image, especially the PCA of decorrelation stretch (DS) approach. The PCA-DS approach, which considered the advantages of both PCA and DS techniques, successfully identified all the geological units in the study area, including the Basalt, Sandstone, Dolomite, and Conglomerate. However, the performance of the PCA and DS techniques was also reasonable for this purpose. On the other hand, the study revealed weak performance of the minimum noise fraction (MNF) and PCA-MNF techniques for geological mapping using Landsat-9 imagery. In conclusion, the study demonstrated the advantage of the PCA-DS approach for geological mapping using Landsat-9 imagery; therefore, it may be useful in futures studies for geological mapping along the whole Alborz Mountain with similar lithological and geomorphological conditions.

Keyword : Landsat-9, principal component analysis, geological mapping

How to Cite
Rokni, K., & Akbari, D. (2024). Identification of geological units in Alborz Mountain in Iran using Landsat-9 image. Geodesy and Cartography, 50(2), 97–103. https://doi.org/10.3846/gac.2024.17720
Published in Issue
Aug 14, 2024
Abstract Views
168
PDF Downloads
131
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abdelouhed, F., Ahmed, A., Abdellah, A., Mohammed, I., & Zouhair, O. (2022). Extraction and analysis of geological lineaments by combining ASTER-GDEM and Landsat 8 image data in the central high atlas of Morocco. Natural Hazards, 111(2), 1907–1929. https://doi.org/10.1007/s11069-021-05122-9

Arabameri, A., Roy, J., Saha, S., Blaschke, T., Ghorbanzadeh, O., & Tien Bui, D. (2019). Application of probabilistic and machine learning models for groundwater potentiality mapping in Damghan Sedimentary Plain, Iran. Remote Sensing, 11(24), Article 3015. https://doi.org/10.3390/rs11243015

Bernknopf, R. L. (1993). Societal value of geologic maps. USGS Circular 1111. https://doi.org/10.3133/cir1111

Bhan, S. K., & Krishnanunni, K. (1983). Applications of remote sensing techniques to geology. Proceedings of the Indian Academy of Sciences Section C: Engineering Sciences, 6(4), 297–311. https://doi.org/10.1007/BF02881136

Compton, R. R. (1985). Geology in the field. Wiley.

Davis, G. H., Reynolds, S. J., & Kluth, C. F. (2011). Structural geology of rocks and regions. John Wiley & Sons.

Fal, S., Maanan, M., Baidder, L., & Rhinane, H. (2019). The contribution of Sentinel-2 satellite images for geological mapping in the south of Tafilalet basin (Eastern Anti-Atlas, Morocco). The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 75–82. https://doi.org/10.5194/isprs-archives-XLII-4-W12-75-2019

Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., & Kahle, A. B. (1998). A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 13–26. https://doi.org/10.1109/36.700995

Green, A. A., Berman, M., Switzer, P., & Craig, M. D. (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1), 65–74. https://doi.org/10.1109/36.3001

Hook, S. J., Gabell, A. R., Green, A. A., & Kealy, P. S. (1992). A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sensing of Environment, 42(2), 123–135. https://doi.org/10.1016/0034-4257(92)90096-3

Inzana, J., Kusky, T., Higgs, G., & Tucker, R. (2003). Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. Journal of African Earth Sciences, 37(1–2), 59–72. https://doi.org/10.1016/S0899-5362(03)00071-X

Kenea, N. H. (1997). Improved geological mapping using Landsat TM data, Southern Red Sea Hills, Sudan: PC and IHS decorrelation stretching. International Journal of Remote Sensing, 18(6), 1233–1244. https://doi.org/10.1080/014311697218386

Khan, S. D., Mahmood, K., & Casey, J. F. (2007). Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data. Journal of Asian Earth Sciences, 30(2), 333–343. https://doi.org/10.1016/j.jseaes.2006.11.001

Kühn, J., Brenning, A., Wehrhan, M., Koszinski, S., & Sommer, M. (2009). Interpretation of electrical conductivity patterns by soil properties and geological maps for precision agriculture. Precision Agriculture, 10(6), 490–507. https://doi.org/10.1007/s11119-008-9103-z

Loughlin, W. P. (1991). Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 57(9), 1163–1169.

Pour, A. B., & Hashim, M. (2015). Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia. Ore Geology Reviews, 64, 13–22. https://doi.org/10.1016/j.oregeorev.2014.06.011

Pournamdari, M., Hashim, M., & Pour, A. B. (2014). Application of ASTER and Landsat TM data for geological mapping of esfandagheh ophiolite complex, Southern Iran. Resource Geology, 64(3), 233–246. https://doi.org/10.1111/rge.12038

Rokni, K., Marghany, M., Hashim, M., & Hazini, S. (2011, December). Comparative statistical-based and color-related pan sharpening algorithms for ASTER and RADARSAT SAR satellite data. In 2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE) (pp. 618–622). IEEE. https://doi.org/10.1109/ICCAIE.2011.6162208

Seleem, T., Hamimi, Z., Zaky, K., & Zoheir, B. (2020). ASTER mapping and geochemical analysis of chromitite bodies in the Abu Dahr ophiolites, South Eastern Desert, Egypt. Arabian Journal of Geosciences, 13(15), 1–21. https://doi.org/10.1007/s12517-020-05624-z

Soller, D. R. (2002). Digital Mapping Techniques ‘02-Workshop Proceedings. USGS Open-file Report 02-370. U.S. Department of the Interior, U.S. Geological Survey.

Ullmann, T., Büdel, C., Baumhauer, R., & Padashi, M. (2016). Sentinel-1 SAR data revealing fluvial morphodynamics in damghan (Iran): Amplitude and coherence change detection. International Journal of Earth Science and Geophysics, 2(1). https://doi.org/10.35840/2631-5033/1807

Varnes, D. J. (1974). The logic of geological maps, with reference to their interpretation and use for engineering purposes. USGS Professional Paper 837. United States Government Printing Office. https://doi.org/10.3133/pp837

Yang, M., Ren, G., Han, L., Yi, H., & Gao, T. (2018). Detection of Pb–Zn mineralization zones in west Kunlun using Landsat 8 and ASTER remote sensing data. Journal of Applied Remote Sensing, 12(2), Article 026018. https://doi.org/10.1117/1.JRS.12.026018