Share:


Design of a smart prefabricated sanitising chamber for COVID-19 using computational fluid dynamics

    Yousef Abu-Zidan   Affiliation
    ; Kate Nguyen   Affiliation
    ; Priyan Mendis Affiliation
    ; Sujeeva Setunge Affiliation
    ; Hojjat Adeli   Affiliation

Abstract

The novel coronavirus (SARS-CoV-2) has spread at an unprecedented rate, resulting in a global pandemic (COVID-19) that has strained healthcare systems and claimed many lives. Front-line healthcare workers are among the most at risk of contracting and spreading the virus due to close contact with infected patients and settings of high viral loads. To provide these workers with an extra layer of protection, the authors propose a low-cost, prefabricated, and portable sanitising chamber that sprays individuals with sanitising fluid to disinfect clothing and external surfaces on their person. The study discusses computer-aided design of the chamber to improve uniformity of sanitiser deposition and reduce discomfort due to excessive moisture. Advanced computational fluid dynamics is used to simulate the dispersion and deposition of spray particle, and the resulting wetting pattern on the treated person is used to optimise the chamber design.

Keyword : COVID-19, sanitising chamber, disinfection chamber, computational fluid dynamics (CFD), numerical simulation, computer aided design (CAD), portable, prefabricated

How to Cite
Abu-Zidan, Y., Nguyen, K., Mendis, P., Setunge, S., & Adeli, H. (2021). Design of a smart prefabricated sanitising chamber for COVID-19 using computational fluid dynamics. Journal of Civil Engineering and Management, 27(2), 139-148. https://doi.org/10.3846/jcem.2021.14348
Published in Issue
Feb 23, 2021
Abstract Views
1263
PDF Downloads
718
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

ANSYS Inc. (2013). ANSYS Fluent theory guide. USA.

Block, M. S., & Rowan, B. G. (2020). Hypochlorous acid: A review. Journal of Oral and Maxillofacial Surgery, 78(9), 1461–1466. https://doi.org/10.1016/j.joms.2020.06.029

Chikahiro, Y., Ario, I., Pawlowski, P., Graczykowski, C., & Holnicki-Szulc, J. (2019). Optimization of reinforcement layout of scissor-type bridge using differential evolution algorithm. Computer-Aided Civil and Infrastructure Engineering, 34(6), 523–538. https://doi.org/10.1111/mice.12432

Dow, A., & Sakkal, P. (2020, April 1). Eighty Victorian healthcare workers test positive for coronavirus. The Age. https://www.theage-com-au.eu1.proxy.openathens.net/national/victoria/eighty-victorian-healthcare-workers-test-positive-for-coronavirus-20200401-p54g55.html

Ferguson, N., Laydon, D., Nedjati Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A., Cucunuba Perez, Z., Cuomo-Dannenburg, G., Dighe, A., Dorigatti, I., Fu, H., Gaythorpe, K., Green, W., Hamlet, A., Hinsley, W., Okell, L., Van Elsland, S., Thompson, H., Verity, R., Volz, E., Wang, H., Wang, Y., Walker, P., Walters, C., Winskill, P., Whittaker, C., Donnelly, C., Riley, S., & Ghani, A. (2020). Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. https://doi.org/10.25561/77482

Ghorbel, H., Zannini, N., Cherif, S., Sauser, F., Grunenwald, D., Droz, W., Baradji, M., & Lakehal, D. (2019). Smart adaptive run parameterization (SArP): enhancement of user manual selection of running parameters in fluid dynamic simulations using bio-inspired and machine-learning techniques. Soft Computing, 23(22), 12031–12047. https://doi.org/10.1007/s00500-019-03761-6

Guo, H., Zhou, J., Liu, F., He, Y., Huang, H., & Wang, H. (2020). Application of machine learning method to quantitatively evaluate the droplet size and deposition distribution of the UAV spray nozzle. Applied Sciences, 10(5), 1759. https://doi.org/10.3390/app10051759

Hakim, H., Alam, M. S., Sangsriratanakul, N., Nakajima, K., Kitazawa, M., Ota, M., Toyofuku, C., Yamada, M., Thammakarn, C., Shoham, D., & Takehara, K. (2016). Inactivation of bacteria on surfaces by sprayed slightly acidic hypochlorous acid water: in vitro experiments. The Journal of Veterinary Medical Science, 78(7), 1123–1128. https://doi.org/10.1292/jvms.16-0075

Hindson, J. (2020). COVID-19: faecal–oral transmission? Nature Reviews Gastroenterology & Hepatology, 17(5), 259–259. https://doi.org/10.1038/s41575-020-0295-7

Jiang, S. (2020). Don’t rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees. Nature, 579, 321–321. https://doi.org/10.1038/d41586-020-00751-9

Johns Hopkins University. (2020). COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). https://coronavirus.jhu.edu/map.html

Junior, C. R., Gomes, P. H., Mano, L. Y., de Oliveira, R. B., de Car valho, A. C. P. de L. F., & Faiçal, B. S. (2017). A machine learning-based approach for prediction of plant protection product deposition [Conference presentation]. 2017 Brazilian Conference on Intelligent Systems (BRACIS), Uberlandia, Brazil. https://doi.org/10.1109/BRACIS.2017.26

Ko, C. H. (2010). An integrated framework for reducing precast fabrication inventory. Journal of Civil Engineering and Management, 16(3), 418–427. https://doi.org/10.3846/jcem.2010.48

Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269–289. https://doi.org/10.1016/0045-7825(74)90029-2

Lefebvre, A. H., & McDonell, V. G. (2017). Atomization and sprays. CRC Press. https://doi.org/10.1201/9781315120911

Lichtarowicz, A., Duggins, R. K., & Markland, E. (1965). Discharge coefficients for incompressible non-cavitating flow through long orifices. Journal of Mechanical Engineering Science, 7(2), 210–219. https://doi.org/10.1243/JMES_JOUR_1965_007_029_02

Mistcooling Inc. (2020). Dimensions of misting nozzle. https://www.mistcooling.com/mist-nozzles-10-24-thread.html

Nurick, W. H. (1976). Orifice cavitation and its effect on spray mixing. Journal of Fluids Engineering, 98(4), 681–687. https://doi.org/10.1115/1.3448452

Rafiei, M. H., & Adeli, H. (2017). A novel machine learningbased algorithm to detect damage in high-rise building structures. The Structural Design of Tall and Special Buildings, 26(18), e1400. https://doi.org/10.1002/tal.1400

Rafiei, M. H., & Adeli, H. (2018a). Novel machine-learning model for estimating construction costs considering economic variables and indexes. Journal of Construction Engineering and Management, 144(12), 04018106. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001570

Rafiei, M. H., & Adeli, H. (2018b). A novel unsupervised deep learning model for global and local health condition assessment of structures. Engineering Structures, 156, 598–607. https://doi.org/10.1016/j.engstruct.2017.10.070

Ranz, W. E. (1958). Some experiments on orifice sprays. The Canadian Journal of Chemical Engineering, 36(4), 175–181. https://doi.org/10.1002/cjce.5450360405

Santangelo, P. E. (2010). Characterization of high-pressure watermist sprays: Experimental analysis of droplet size and dispersion. Experimental Thermal and Fluid Science, 34(8), 1353– 1366. https://doi.org/10.1016/j.expthermflusci.2010.06.008

Shahrara, N., Çelik, T., & Gandomi, A. H. (2017). Gene expression programming approach to cost estimation formulation for utility projects. Journal of Civil Engineering and Management, 23(1), 85–95. https://doi.org/10.3846/13923730.2016.1210214

Shih, T.-H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 24(3), 227–238. https://doi.org/10.1016/0045-7930(94)00032-T

Take, W. A. (2015). Thirty-Sixth Canadian Geotechnical Colloquium: Advances in visualization of geotechnical processes through digital image correlation. Canadian Geotechnical Journal, 52(9), 1199–1220. https://doi.org/10.1139/cgj-2014-0080

van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., & Munster, V. J. (2020). Aerosol and surface stability of SARSCoV-2 as compared with SARS-CoV-1. New England Journal of Medicine, 382(16), 1564–1567. https://doi.org/10.1056/NEJMc2004973

Wang, C., Abdul-Rahman, H., & Ch’ng, W. S. (2016a). Ant colony optimization (ACO) in scheduling overlapping architectural design activities. Journal of Civil Engineering and Management, 22(6), 780–791. https://doi.org/10.3846/13923730.2014.914100

Wang, C., Abdul-Rahman, H., & Chow, P. S. (2016b). Development and test run of civil engineering schedule acceleration model through ant colony optimization. Journal of Civil Engineering and Management, 22(8), 1009–1020. https://doi.org/10.3846/13923730.2014.945954

Zawidzki, M., & Jankowski, Ł. (2019). Multiobjective optimization of modular structures: Weight versus geometric versatility in a Truss-Z system. Computer-Aided Civil and Infrastructure Engineering, 34(11), 1026–1040. https://doi.org/10.1111/mice.12478

Zhu, P., Wang, X. S., Li, G. C., Liu, Y. P., Kong, X. X., Huang, Y. Q., Zhao, X. D., & Yuan, J. W. (2017). Experimental study on interaction of water mist spray with high-velocity gas jet. Fire Safety Journal, 93, 60–73. https://doi.org/10.1016/j.firesaf.2017.08.005