Share:


Nonlinear finite element analysis of continuous welded rail–bridge interaction: monitoring-based calibration

    Alfred Strauss Affiliation
    ; Martina Šomodíková Affiliation
    ; David Lehký Affiliation
    ; Drahomír Novák Affiliation
    ; Konrad Bergmeister Affiliation

Abstract

Continuous welded rail is of high interest to operators of railway infrastructure facilities because of the reduced maintenance work and better train driving dynamics it offers. However, the application of continuous welded rail, in particular associated with its interaction with the superstructures of e.g. bridges, requires special caution with regard to the rail stresses in the transition area between the structure and the free field. These stresses are not only influenced by thermal deformations of the bridges but also by the clamp systems between the rails and e.g. the bridge. In general, these connectors are represented by spring elements during modelling, which: (a) causes singularities in the stress distributions in the rails, and (b) cannot capture all the mechanical system changes occurring due to loading, thermal effects, etc. The target of this paper is to present an alternative way of modelling the connection between rails and bridge superstructure based on composite materials which can overcome the disadvantages of the spring model. In particular, a nonlinear model of the whole system was developed for ballasted and non-ballasted track. Special attention was paid to the calibration of rail–bridge interaction and boundary conditions using measured data and code specifications. The aim of this study was to use the results of in-situ measurements to analyse the admissible stress in rails due to their interaction with a bridge caused by temperature loading.

Keyword : continuous welded rail, rail–bridge interaction, connectors based on composite materials, temperature loading, admissible stress capacity, monitoring-based calibration, non-linear finite element modelling

How to Cite
Strauss, A., Šomodíková, M., Lehký, D., Novák, D., & Bergmeister, K. (2018). Nonlinear finite element analysis of continuous welded rail–bridge interaction: monitoring-based calibration. Journal of Civil Engineering and Management, 24(4), 344-354. https://doi.org/10.3846/jcem.2018.3050
Published in Issue
Jul 11, 2018
Abstract Views
1499
PDF Downloads
1196
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Cazzani, A.; Wagner, N.; Ruge, P.; Stochino, F. 2016. Continuous transition between traveling mass and traveling oscillator using mixed variables, International Journal of Non-Linear Mechanics 80: 82–95. https://doi.org/10.1016/j.ijnonlinmec.2015.06.017

Červenka, V.; Jendele, L.; Červenka, J. 2012. ATENA program documentation – Part 1: theory. Prague: Cervenka Consulting Ltd.

Chaudhary, K. R.; Sinha, A. N. (n.d.). A study of various methods adopted by world railways to continue LWR over bridges. Course No. 623 Sr Professional Course (P WAY), S.R. Global University, India.

Chen, W. F.; Saleeb, A. F. 1982. Constitutive equations for engineering materials. John Wiley & Sons.

Colnat, V.; Brems, W. 1983. Anfahrkräfte auf Brücken und Wechselwirkungen zwischen Gleisen und Brücken. Berechnung des Temperatureinflusses auf Brücken mit durchgehend geschweisstem Gleis (Theoritische Studien und Anwendungen). Utrecht: ORE.

DIN-Fb 101:2003. Einwirkungen auf Brücken [Actions on bridges]. Deutsches Institut für Normung, 2003 (in German).

EN 1991-2:2003 Eurocode 1: Actions on structures – Part 2: Traffic loads on bridges. European Committee for Standardization, 2003.

Esveld, C. 2001. Modern railway track. MRT-Production.

Frýba, L. 1996. Dynamics of railway bridges. Thomas Telford Ltd. https://doi.org/10.1680/dorb.34716

Gerlich, K.; Pahnke, U. 1981. Wechselwirkung Brücke-Gleis bei Abtragung von Längskräften, Eisenbahntechnische Rundschau 30(3): 225–229.

Gerlich, K.; Pahnke, U. 1982. Abtragung der Längskräfte im eisenbahnbrückenbau, Archiv Für Eisenbahntechnik 37: 19–30.

Karimi, S. 2017. Monitoring basierte Analyse der Gleis Tragwerke Interaktion, MAGIT: Dissertation. Institut für Konstruktiver Ingenieurbau, Universität für Bodenkultur Wien. In progress.

Kerr, A. D. 1978. Analysis of thermal track buckling in the lateral plane, Acta Mechanica 30: 17–50. https://doi.org/10.1007/BF01177436

Kerr, A. D. 1980. An improved analysis for thermal track buckling, International Journal of Non-Linear Mechanics 15(2): 99–114. https://doi.org/10.1016/0020-7462(80)90004-9

Klaaßen, K.; Schmälzlin, G. 1980. Berechnung der Längskräfte in hohen Eisenbahnbrücken bei nichtlinearem Materialgesetz des Schotters, Bautechnik 57(8): 279–280.

Kupfer, R. 2002. Untersuchung der während einer Zuguberfahrt im Gleis auftretenden Längsbewegungen, in Schriftenreihe Prüfamtes für Bau von Landverkehrswegen der TU München, München, 37–46.

Lim, N.-H.; Park, N.-H.; Kang, Y.-J. 2003. Stability of continuous welded rail track, Computers & Structures 81(22–23): 2219–2236.

Monnickendam, A. 2006. Track/bridge interaction and direct track fixing, in The 3rd Network Rail Sponsored Supplier Conference on the Maintenance and Renewal of Bridges, Bristol, 61–64.

Pahnke, U. 1998. Einfluß der Biegung einer Eisenbahnbrücke auf die Schiene in Längsrichtung, Stahlbau 67(8): 634–641. https://doi.org/10.1002/stab.199802180

PORR AG. 2016. Slab track Austria – System ÖBB–PORR elastically supported slab [online], [cited 5 July 2017]. Available from Internet: http://www.slabtrackaustria.com/fileadmin/content/39_SlabTrackAustria/04_Download/slab_track_austria_brochure_feste_fahrbahn_160826_e.pdf

Prommersberger, G.; Rojek, R. 1981. Grundsatzuntersuchung zur Abtragung der Längkräfte auf Talbrücken, Eisenbahningenieur 32: 383–395.

Prommersberger, G.; Rojek, R. 1985. Tragsysteme zur Abtragung von Längskräften auf Eisenbahnbrücken, Eisenbahningenieur 36: 344–350.

Ruge, P.; Birk, C.; Muncke, M.; Schmälzlin, G. 2005a. Schienenlängskräfte auf Brücken bei nichtlinearer überlagerung der Lastfälle Temperatur, Tragwerksbiegung, Bremsen, Bautechnik 82(11): 818–825. https://doi.org/10.1002/bate.200590234

Ruge, P.; Schmälzlin, G.; Trinks, C. 2005b. Schienenlängskräfte auf Brücken infolge Biegung, Bautechnik 82(2): 69–80. https://doi.org/10.1002/bate.200590048

Ruge, P.; Trinks, C.; Muncke, M.; Schmälzlin, G. 2004. Längskraftbeanspruchung von durchgehend geschweißten Schienen auf Brücken für Lastkombinationen, Bautechnik 81(7): 537–548. https://doi.org/10.1002/bate.200490125

Ruge, P.; Widarda, D. R.; Birk, C., 2009a. Longitudinal rail forces on railway bridges during passing of trains, Bautechnik 86(11): 677–694. https://doi.org/10.1002/bate.200910067

Ruge, P.; Widarda, D. R.; Schmälzlin, G.; Bagayoko, L. 2009b. Longitudinal track–bridge interaction due to sudden change of coupling interface, Computers & Structures 87(1–2): 47–58. https://doi.org/10.1016/j.compstruc.2008.08.012

Ruge, P.; Widarda, D.; Birk, C. 2007. Longitudinal track-bridge interaction for load-sequences, in R. Calçada et al. (Eds.). Track-bridge interaction on high-speed railways: Selected and revised papers from the workshop on “Track-bridge interaction on high-speed railways”, 15–16 October 2007, Porto, Portugal, 93–116.

Simões, R.; Calçada, R.; Delgado, R. 2007. Track-bridge interaction in railway lines: numerical modelling and application, in R. Calçada et al. (Eds.). Track-bridge interaction on high-speed railways: Selected and revised papers from the workshop on “Track-bridge interaction on high-speed railways”, 15–16 October 2007, Porto, Portugal, 205–216.

Strauss, A.; Karimi, S.; Šomodíková, M.; Lehký, D.; Novák, D.; Frangopol, D. M.; Bergmeister, K. 2018. Monitoring-based nonlinear system modeling of bridge–continuous welded rail interaction, Engineering Structures 155: 25–35. https://doi.org/10.1016/j.engstruct.2017.10.053

UIC Code 774-3R:2001 Track/bridge interaction – Recommendations for calculations. Union Internationale des Chemins de fer, 2001.

Wenner, M.; Lippert, P.; Plica, S.; Marx, S. 2016a. Track-bridge interaction. Part 1: Historical development and model, Bautechnik 93(2): 59–67. https://doi.org/10.1002/bate.201500107

Wenner, M.; Lippert, P.; Plica, S.; Marx, S. 2016b. Track-bridge interaction. Part 2: Background to the verification method, Bautechnik 93(7): 470–481. https://doi.org/10.1002/bate.201600034