Share:


Identifying the effect of tides on groundwater level fluctuations on Gili Ketapang Island, Indonesia

    Agung Dwi Purnomo Affiliation
    ; Muh Aris Marfai Affiliation
    ; Semeidi Husrin Affiliation

Abstract

This research aims to identify the effect of tides on groundwater level fluctuation in Gili Ketapang Island by using a combination of field monitoring and hydrodynamic modeling. Groundwater data were collected from 5 July to 17 August 2018 from two wells monitoring, while the hydrodynamic model was adopted to identify sea-level conditions. The result explains the sea level around the island is similar among extremely strong correlations between the points. The hydrodynamic model proves a standing wave due to tidal amplification in Madura Strait waters. The effect of tides on the groundwater level characterized by decreasing in amplitudes and time lags as increasing the distance from the coast.

Keyword : tides, groundwater level fluctuations, Gili Ketapang Island, hydrodynamic model

How to Cite
Purnomo, A. D., Marfai, M. A., & Husrin, S. (2021). Identifying the effect of tides on groundwater level fluctuations on Gili Ketapang Island, Indonesia. Journal of Environmental Engineering and Landscape Management, 29(3), 215-228. https://doi.org/10.3846/jeelm.2021.14618
Published in Issue
Jun 23, 2021
Abstract Views
912
PDF Downloads
800
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abarca, E., Karam, H., Hemond, H. F., & Harvey, C. F. (2013). Transient groundwater dynamics in a coastal aquifer: The effects of tides, the lunar cycle, and the beach profile. Water Resources Research, 49(5), 2473–2488. https://doi.org/10.1002/wrcr.20075

Abdullah, M. H., Mokhtar, M. B., Tahir, S. H., & Awaludin, A. B. (1997). Do tides affect water quality in the upper phreatic zone of a small oceanic island, Sipadan Island, Malaysia? Environmental Geology, 29, 112–117. https://doi.org/10.1007/s002540050109

Ataie-Ashtiani, B., Volker, R. E., & Lockington, D. A. (2001). Tidal effects on groundwater dynamics in unconfined aquifers. Hydrological Processes, 15(4), 655–669. https://doi.org/10.1002/hyp.183

Badan Meteorologi, Klimatologi, dan Geofisika. (2018). FaseFase Bulan dan Jarak Bumi-Bulan pada Tahun 2018. Jakarta. https://www.bmkg.go.id/?lang=ID

Banerjee, P., Singh, V. S., Singh, A., Prasad, R. K., & Rangarajan, R. (2012). Hydrochemical analysis to evaluate the seawater ingress in a small coral island of India. Environmental Monitoring and Assessment, 184, 3929–3942. https://doi.org/10.1007/s10661-011-2234-0

Barnston, A. G. (1992). Correspondence among the correlation, RMSE, and Heidke Foresast verification measures; Refinement of the Heidke Score. Weather and Forecasting, 7(4), 699–709. https://doi.org/10.1175/1520-0434(1992)007<0699:CATCRA>2.0.CO;2

Bayhaqi, A., Wisha, U. J., & Surinati, D. (2018). Modeling tidal current of Banten Bay during transitional monsoons 2015– 2016. Jurnal Segara, 14(2), 95–105. https://doi.org/10.15578/segara.v14i2.6452

Cui, X., Fang, G., & Wu, D. (2019). Tidal resonance in the Gulf of Thailand. Ocean Science. 15(2), 321–331. https://doi.org/10.5194/os-15-321-2019

Dean, R. G., & Dalrymple, R. A. (1991). Anvanced series on ocean engineering: Vol. 2. Water wave mechanics for engineers and scientists. World Scientific Publisher. https://doi.org/10.1142/1232

Danish Hydraulic Institute. (2017). MIKE 21 flow model FM: Hydrodynamic module. User guide. https://manuals.mikepoweredbydhi.help/2017/Coast_and_Sea/MIKE_FM_HD_2D.pdf

Dong, L., Shimada, J., Kagabu, M., & Yang, H. (2015). Barometric and tidal-induced aquifer water level fluctuation near the Ariake Sea. Environmental Monitoring and Assessment, 187(1), 4187–4203. https://doi.org/10.1007/s10661-014-4187-6

Erskine, A. D. (1991). The effect of tidal fluctuation on a coastal aquifer in UK. Groundwater, 29(4), 556–562. https://doi.org/10.1111/j.1745-6584.1991.tb00547.x

Falkland, A. C. (1993). Hydrology and water management on small tropical islands. In J. S. Gladwell, Hydrology of Warm Humid Regions (pp. 263–303). IAHS Press.

Falkland, A. C., Custodio, E., Diaz Arenas, A., & Simler, L. (1991). Hydrology and water resources of small islands: A practical guide. UNESCO Publisher.

Fetter, Jr. C. W. (1972). Position of the saline water interface beneath oceanic islands. Water Resources Research, 8(5), 1307– 1315. https://doi.org/10.1029/WR008i005p01307

Geospatial Information Agency. (2019, 25 June). Raster of bathymetry: BATNAS_110E-115E_10S-05S_MSL_v1.1. http://tides.big.go.id/DEMNAS/

Geospatial Information Agency. (2019, 25 June). Shapefile of shoreline data of East Java. Indonesia-Geospatial Portal. https://portal.ina-sdi.or.id/downloadaoi/

Godin, G. (1993). On tidal resonance. Continental Shelf Research, 13(1), 89–107. https://doi.org/10.1016/0278-4343(93)90037-X

Hadi, S., & Radjawane, I.M. (2010). Arus Laut. Institut Teknologi Bandung.

Hegge, B. J., & Masselink, G. (1991). Groundwater-table responses to wave run-up: An experimental study from Western Australia. Journal of Coastal Research, 7(3), 623–634.

Heiss, J. W., & Michael, H. A. (2014). Saltwater-freshwater mixing dynamics in a sandy beach aquifer over tidal, spring-neap, and seasonal cycles. Water Resources Research, 50(8), 6747–6766. https://doi.org/10.1002/2014WR015574

Hidayati, N., Purnawali, H. S., & Kusumawati, D. W. (2016). Prediksi perubahan garis pantai Pulau Gili Ketapang, Probolinggo dengan menggunakan one-line model [Coference presentation]. Seminar Nasional Perikanan dan Kelautan VI, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya, Malang.

Hill, D. F. (2016). Spatial and temporal variability in tidal range: Evidence, causes, and effects. Current Climate Change Reports, 2, 232–241. https://doi.org/10.1007/s40641-016-0044-8

Holleman, R. C., & Stacey, M. T. (2014). Coupling of sea level rise, tidal amplification, and inundation. Journal of Physical Oceanography, 44(5), 1439–1455. https://doi.org/10.1175/JPO-D-13-0214.1

Holt, J. T., Allen, J. I., Proctor, R., & Gilbert, F. (2005). Error quantification of a high-resolution coupled hydrodynamicecosystem coastal-ocean model: Part 1 model overview and assessment of the hydrodynamics. Journal of Marine Systems, 57(1–2), 167–188. https://doi.org/10.1016/j.jmarsys.2005.04.008

Horn, D. P. (2002). Beach groundwater dynamics. Geomorphology, 48(1–3), 121–146. https://doi.org/10.1016/S0169-555X(02)00178-2

Hsieh, P., Hsu, H., Liao, C. B., & Chiueh, P. (2015). Groundwater response to tidal fluctuation and rainfall in a coastal aquifer. Journal of Hydrology, 521, 132–140. https://doi.org/10.1016/j.jhydrol.2014.11.069

Huang, A., Rao, Y. R., & Lu, Y. (2010). Evaluation of a 3-D hydrodynamic model and atmospheric forecast forcing using observations in Lake Ontario. Journal of Geophysical Research, 115(2), C02004. https://doi.org/10.1029/2009JC005601

Huang, F., Chuang, M., Wang, G. S., & Yeh, H. (2015). Tideinduced groundwater level fluctuation in a U-shaped coastal aquifer. Journal of Hydrology, 530, 291–305. https://doi.org/10.1016/j.jhydrol.2015.09.032

Husrin, S. (2018). Kajian Daya Dukung Sumberdaya Airtanah di Pulau Kecil yang Berpenduduk Padat (Studi Kasus: Pulau Gili Ketapang, Probolinggo, Jawa Timur) [Conference presentation]. Kuliah Umum Analisis Kerentanan Pesisir dari Sisi Teknik Pantai. Fakultas Geografi Universitas Gadjah Mada.

Jasonsmith, J. F., Macdonald, B. C. T., & White, I. (2017). Earthtide-induced fluctuations in the salinity of an inland river, New South Wales, Australia: A short-term study. Environmental Monitoring and Assessment, 189, 188. https://doi.org/10.1007/s10661-017-5880-z

Jeng, D. S., Li, L., & Barry, D. A. (2002). Analytical solution for tidal propagation in a coupled semi-confined/phreatic coastal aquifer. Advances in Water Resources, 25(5), 577–584. https://doi.org/10.1016/S0309-1708(02)00016-7

Jeng, D. S., Mao, X., Enot, P., Barry, D. A., Li, L., & Binlet, A. (2005). Spring-neap tide-induced beach water table fluctuations and its influence on the behaviour of a coastal aquifer adjacent to a low-relief estuary (Research Report). Department of Civil Engineering, University of Sydney.

Kim, J., Lee, J., Cheong, T., Kim, R., Koh, D., Ryu, J., & Chang, H. (2005). Use of time series analysis for the identification of tidal effect on groundwater in the coastal area of Kimje, Korea. Journal of Hydrology, 300(1–4), 188–198. https://doi.org/10.1016/j.jhydrol.2004.06.004

Kim, K., Seong, H., Kim, T., Park, K., Woo, N., Park, Y., Koh, G., & Park, W. (2006). Tidal effects on variations of fresh – saltwater interface and groundwater flow in a multilayered coastal aquifer on a volcanic island (Jeju Island, Korea). Journal of Hydrology, 330(1–4), 525–542. https://doi.org/10.1016/j.jhydrol.2006.04.022

Kusmanto, E., Hasanudin, M., & Setyawan, W. B. (2016). Amplifikasi Pasang Surut dan Dampaknya terhadap Perairan Pesisir Probolinggo. Oseanologi dan Limnologi di Indonesia, 1(3), 69–80.

Levanon, E., Shalev, E., Yechieli, Y., & Gvirtzman, H. (2016). Fluctuations of fresh-saline water interface and of water table induced by sea tides in unconfined aquifers. Advances in Water Resources, 96, 34–42. https://doi.org/10.1016/j.advwatres.2016.06.013

Levanon, E., Yechielli, Y., Gvirtzman, H., & Shalev, E. (2017). Tide-induced fluctuations of salinity and groundwater level in unconfined aquifers – Field measurements and numerical model. Journal of Hydrology, 551, 665–675. https://doi.org/10.1016/j.jhydrol.2016.12.045

Liu, Y., Shang, S., & Mao, X. (2012). Tidal effects on groundwater dynamics in coastal aqui- fer under different beach slopes. Journal of Hydrodynamics, 24(1), 97–106. https://doi.org/10.1016/S1001-6058(11)60223-0

Mao, X., Enot, P., Barry, D. A., Li, L., Binley, A., & Jeng, D.-S. (2006). Tidal influence on behaviour of a coastal aquifer adjacent to a low-relief estuary. Journal of Hydrology, 327(1–2), 110–127. https://doi.org/10.1016/j.jhydrol.2005.11.030

Narulita, I., Santoso, H., Hantoro, W. S., & Djuwansah, M. R. (2005). Pengaruh pasang surut laut terhadap posisi kualitas air tanah di Pulau Pari, Kepulauan Seribu, DKI Jakarta. In P. E. Hehanussa, & H. Bakti, Sumberdaya Air di Pulau Kecil. Indonesian Institute of Sciences.

Nielsen, P. (1990). Tidal dynamics of the water table in beaches. Water Resources Research, 26(9), 2127–2134. https://doi.org/10.1029/WR026i009p02127

Opatz, C. C., & Dinicola, R. S. (2018). Analysis of groundwater response to tidal fluctuations, Operable Unit 2, Area 8, Naval Base Kitsap, Keyport, Washington (Open-File Report 2018– 1082). U.S. Geological Survey. https://doi.org/10.3133/ofr20181082

Pauw, P. S., Essink, G. H. P. O., Leijnse, A., Vandenbohede, A., Groen, J., & van der Zee, S. E. A. T. M. (2014). Regional scale impact of tidal forcing on groundwater flow in unconfined coastal aquifers. Journal of Hydrology, 517, 269–283. https://doi.org/10.1016/j.jhydrol.2014.05.042

Prihantono, J., Fajrianto, I. A., & Kurniadi, Y. N. (2018). Pemodelan hidrodinamika dan transpor sedimen di perairan pesisir sekitar Tanjung Pontang, Kabupaten Serang – Banten. Jurnal Kelautan Nasional, 13(2), 75–88. https://doi.org/10.15578/jkn.v1i2.6614

Purnama, S. (2010). Hidrologi Airtanah. Kanisius.

Robinson, C., Li, L., & Prommer, H. (2007). Tide-induced recirculation across the aquifer-ocean interface. Water Resources Research, 43, W07428. https://doi.org/10.1029/2006WR005679

Singaraja, C., Chidambaram, S., & Jacob, N. (2018). A study on the influence of tides on the water table conditions of the shallow coastal aquifers. Applied Water Science, 8, 11. https://doi.org/10.1007/s13201-018-0654-5

Spaulding, M. L., & Mendelsohn, D. L. (1999). WQMAP: An integrated three-dimensional hydrodynamic and water quality model system for estuarine and coastal applications. Marine Technology Society Journal, 33(3), 38–54. https://doi.org/10.4031/MTSJ.33.3.6

Sutherland, G., Garrett, C., & Foreman, M. (2005). Tidal resonance in Juan de Fuca strait and the strait of Georgia. Journal of Physical Oceanography, 35(7), 1279–1286. https://doi.org/10.1175/JPO2738.1

Todd, D. K. (1980). Groundwater hydrology (2nd ed.). John Wiley & Sons.

Trglavcnik, V., Morrow, D., Weber, K. P., Li, L., & Robinson, C. E. (2018). Analysis of tide and offshore storm-induced water table fluctuations for structural characterization of a coastal island aquifer. Water Resources Research, 54(4), 2749–2767. https://doi.org/10.1002/2017WR020975

Urish, D. W., & Mckenna, T. E. (2004). Tidal effects on ground water discharge through a sandy marine beach. Groundwater, 42(7), 971–982. https://doi.org/10.1111/j.1745-6584.2004.tb02636.x

Van Rijn, L. C. (2011). Analytical and numerical analysis of tides and salinities in estuaries; Part I: Tidal wave propagation in convergent estuaries. Ocean Dynamics, 61, 1719–1741. https://doi.org/10.1007/s10236-011-0453-0

Vandenbohede, A., & Lebbe, L. (2007). Effects of tides on a sloping shore: Groundwater dynamics and propagation of the tidal wave. Hydrogeology Journal, 15, 645–658. https://doi.org/10.1007/s10040-006-0128-y

Webb, D. J. (2014). On the tides and resonances of Hudson Bay and Hudson Strait. Ocean Science, 10, 411–426. https://doi.org/10.5194/os-10-411-2014

Werner, A. D., & Lockington, D. A. (2003). Influence of hysteresis on tidal capillary fringe dynamics in a well-sorted sand. Advances in Water Resources, 26(11), 1199–1204. https://doi.org/10.1016/S0309-1708(03)00107-6

White, I., Falkland, T., Perez, P., Dray, A., Metutera, T., Metai, E., & Overmars, M. (2007). Challenges in freshwater management in low coral atolls. Journal of Cleaner Production, 15(16), 1522–1528. https://doi.org/10.1016/j.jclepro.2006.07.051

Wisha, U. J., Tanto, T. A., Pranowo, W. S., & Husrin, S. (2018). Current movement in Benoa Bay water, Bali, Indonesia: Pattern of tidal current changes simulated for the condition before, during, and after reclamation. Regional Studies in Marine Science, 18, 177–187. https://doi.org/10.1016/j.rsma.2017.10.006

Wu, L., & Zhuang, S. (2010). Experimental investigation of effect of tide on coastal groundwater table. Journal of Hydrodynamics, 22(1), 66–72. https://doi.org/10.1016/S1001-6058(09)60029-9

Xun, Z., Chao, S., Ting, L., & Ruige, C. (2015). Estimation of aquifer parameters using tide-induced groundwater level measurements in a coastal confined aquifer. Environment Earth Science, 73, 2197–2204. https://doi.org/10.1007/s12665-014-3570-5

Xun, Z., Chuanxia, R., Yanyan, Y., Bin, F., & Yecheng, O. (2006). Tidal effects of groundwater levels in the coastal aquifers near Beihai, China. Environmental Geology, 51, 517–525. https://doi.org/10.1007/s00254-006-0348-4

Zhang, Y., Li, L., Erler, D. V., Santos, I., & Lockington, D. (2017). Effects of beach slope breaks on nearshore groundwater dynamics. Hydrological Processes, 31(14), 2530–2540. https://doi.org/10.1002/hyp.11196