Share:


Detecting Land use/cover dynamics and land suitability mapping for Irbid governorate using an integrated approach

    Alsharifa Hind Mohammad Affiliation
    ; Taleb Odeh Affiliation
    ; Maha Halalsheh Affiliation
    ; Khaldoun Shatanawi Affiliation

Abstract

This research proposes to design an approach recognizing land use/cover change for Irbid governorate from 1985 to 2015 in 10 years period bases, with an agriculture suitability map using remote sensing and GIS. In this paper, ENVI6 was used to analyse Landsat images, which helps to understand the land uses’ classes. LULC Changes results showed an increase in urban land, from 2% in 1985 reached to 11% in 2015; soil and agricultural classes had declined, in 1985 they were 74% of the total area, and reduced to 67% in 2015.  Irbid Governorate’s change detection results revealed that the decline of agriculture and rock land areas is due to the accelerated expansion of urbanization, which negatively affects agricultural lands. Modelling the area showed high suitability for agricultural activities, which should be considered for the upcoming plans.

Keyword : Land use/cover (LULC), Irbid, Landsat 5, 7, ENVI, remote sensing, suitability map

How to Cite
Mohammad, A. H., Odeh, T., Halalsheh, M., & Shatanawi, K. (2021). Detecting Land use/cover dynamics and land suitability mapping for Irbid governorate using an integrated approach. Journal of Environmental Engineering and Landscape Management, 29(3), 263-272. https://doi.org/10.3846/jeelm.2021.15150
Published in Issue
Aug 26, 2021
Abstract Views
1027
PDF Downloads
584
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abd El-Kawy, O. R., Ismail, H. A., Rod, J. K., & Suliman, A. S. (2010). A developed GIS-based land evaluation model for agricultural land suitability assessments in arid and semiarid regions research. Research Journal of Agriculture and Biological Sciences, 6(5), 589–599. https://www.researchgate.net/publication/316513719_A_Developed_GIS-based_Land_Evaluation_Model_for_Agricultural_Land_Suitability_Assessments_in_Arid_and_Semi_Arid_Regions

Abdullah, A. Y. M., Masrur, A., Adnan, M. S. G., Al Baky, Md. A., Hassan, Q. K., & Dewan, A. (2019). Spatio-temporal patterns of land use/land cover change in the heterogeneous coastal region of Bangladesh between 1990 and 2017. Remote Sensing, 11(7), 790. https://doi.org/10.3390/rs11070790

Al Farajat, M., Mohammad, A. H., Diabat, A., & Al Ibraheem, H. (2015). Developing a land suitability index for agricultural uses in dry lands from geologic point of view using GIS – a case study from Jordan. Indonesian Journal on Geoscience, North America, 2(2). https://doi.org/10.17014/ijog.2.2.63-76

Alharbi, O. M. L., Basheer, A. A. Khattab, R. A., & Ali, I. (2018). Health and environmental effects of persistent organic pollutants. Journal of Molecular Liquids, 263, 442–453. https://doi.org/10.1016/j.molliq.2018.05.029

Ali, I., Asim, M., & Khan, T. A. (2013). Arsenite removal from water by electro-coagulation on zinc–zinc and copper–copper electrodes. International Journal of Environmental Science and Technology, 10, 377–384. https://doi.org/10.1007/s13762-012-0113-z

Ali, I., Alothman, Z. A., & Alwarthan, A. (2017). Supra molecular mechanism of the removal of 17-β-estradiol endocrine disturbing pollutant from water on functionalized iron nanoparticles. Journal of Molecular Liquids, 241, 123–129. https://doi.org/10.1016/j.molliq.2017.06.005

Al-Mashagbah, A. F. O., & Al-Adamat, R. A. N. (2010). Mapping the land use/land cover changes in the basalt area between 1990 and 20 2005 using remote sensing and GIS. Jordan Journal of Civil Engineering, 4(3), 272–279. https://www.iiste.org/Journals/index.php/JJCE/article/view/17919/18296

Al-Sallal, F. J., & Al-Bilbisi, H. H. (2011). A GIS and remote sensing based integrated approach to detect land use/cover dynamics in Sahab district (Central Jordan). Abahth Al-Yarmouk. Humanities & Social Sciences, 27(3), 2345–2362. http://repository.yu.edu.jo/bitstream/123456789/2579/1/598839.pdf

Basheer, A. A. (2017). Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21st century. Chirality, 30(4), 402–406. https://doi.org/10.1002/chir.22808

Basheer, A. A., & Ali, I. (2018). Stereoselective uptake and degradation of pesticide stereomers in water-sediment system. Chirality, 30(9), 1088–1095. https://doi.org/10.1002/chir.22989

Bender, F. (1974). Geology of Jordan. Contribution of the regional geology of the earth. Borntraeger, Berlin. https://www.worldcat.org/title/geology-of-jordan/oclc/1067003

De la Rosa, D., Cardona, F., & Almorza, J. (1981). Crop yield predictions based on properties of soils in Sevilla, Spain. Geoderma, 25(3–4), 267–274. https://doi.org/10.1016/0016-7061(81)90040-9

Department of Statistics. (2014). Statistical year book. Government Publication, Amman. http://dosweb.dos.gov.jo/products/statistical-yearbook2014/

Dunlap, R. E., & Jorgenson, A. (2012). Environmental problems. In The Wiley-Blackwell Encyclopedia of Globalization (1st ed.). Wiley. https://doi.org/10.1002/9780470670590.wbeog174

ElSheik, R. F. A., Ahmad, N., Shariff, A. R. M., Balasundra, S. K., & Yahaya, S. (2010). An agricultural investment map based on geographic information system and multi-criteria method. Journal of Applied Sciences, 10(15), 1596–1602. https://doi.org/10.3923/jas.2010.1596.1602

Farhan, I. A., & Al-Bakri, F. T. (2012). Use of GIS and remote sensing to assess soil erosion in an arid to semiarid basin in Jordan. In Proceedings of the International Conference on Sediment Transport: Modeling in Hydrological Watersheds and Rivers (pp. 145–152). Istanbul. https://www.researchgate.net/publication/259360636_Use_of_GIS_and_remote_sensing_to_assess_soil_erosion_in_arid_to_semiarid_basin_in_Jordan

Food and Agriculture Organization of the United Nations. (1976). A framework for land evaluation (FAO Soils Bulletin, 32). Rome. http://www.fao.org/3/x5310e/x5310e00.htm

Food and Agriculture Organization of the United Nations. (1983). Guidelines: Land evaluation for rainfed agriculture (FAO Soils Bulletin, 52). Italy, Rome. http://www.fao.org/fileadmin/templates/cpesap/C-RESAP_Info_package/Links/Module_5/Land_ev_and_LUP.pdf

Food and Agriculture Organization of the United Nations. (1985). Guidelines: Land evaluation for irrigated agriculture (FAO Soils Bulletin, 55). Rome, Italy. http://www.fao.org/3/X5648E/x5648e00.htm

Food and Agriculture Organization of the United Nations. (1993). Guidelines for land use planning (FAO Development Series 1). Rome. http://www.fao.org/3/t0715e/t0715e00.htm

Food and Agriculture Organization of the United Nations. (2007). Land evaluation towards a revised framework. Italy, Rome.

Gülersoy, A. E., & Çelİk, M. A. (2017). Temporal change of land use in the Protection Basin of Tahtalı Dam (1990–2015), (Izmir, Turkey). Journal of Environmental Biology, 38(5), 1061–1067. https://doi.org/10.22438/jeb/38/5(SI)/GM-24

Gülersoy, A. E., Gümüş, N., Snmez, M. E., & Gündüzoğlu, G. (2015). Relations between the land use and land capability classification in Küçük Menderes River Basin. Journal of Environmental Biology, 36(Spec No), 17–26. https://pubmed.ncbi.nlm.nih.gov/26591877/

Hobler, M., Margane, A., Almomani, M., & Subah, A. (2001). Groundwater resources of Northern Jordan, Vol. 4: Hydrogeological Features of Northern Jordan. Technical Cooperation Project “Advisory Services to the Water Authority of Jordan”. BGR & WAJ, BGR archive no. 112708:5. Amman.

Joerin, F., Thériault, M., & Musy, A. (2001). Using GIS and outranking multicriteria analysis for land-use suitability assessment. International Journal of Geographical Information Science, 15(2), 153–174. https://doi.org/10.1080/13658810051030487

Lambin, E. F., & Meyfroidt, P. (2010). Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy, 27(2), 108–118. https://doi.org/10.1016/j.landusepol.2009.09.003

Li, J. P., & Chou, J. F. (1997). Existence of atmosphere attractor. Science in China Series D: Earth Sciences, 40, 215–224. https://doi.org/10.1007/BF02878381

Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870. https://doi.org/10.1080/01431160600746456

Margane, A., Hobler, H., & Subah, A. (1999). Mapping of groundwater vulnerability and hazards to groundwater in the Irbid area, N Jordan. Zeischrift für Angewandte Geologie, 45(4), 75–187. https://www.geozentrum-hannover.de/EN/Themen/Wasser/Produkte/Downloads/zag45-4_gwvuln_irbid.pdf?__blob=publicationFile&v=2

Mazahreh, S., Bsoul, M., & Hamoor, D. A. (2018). GIS approach for assessment of land suitability for different land use alternatives in semi-arid environment in Jordan: Case study (Al Gadeer Alabyad-Mafraq). Information Processing in Agriculture, 6(1), 91–108. https://doi.org/10.1016/j.inpa.2018.08.004

Ministry of Water and Irrigation, Jordan. (2010). National water master plan of Jordan, GTZ, Framework of cooperation between the Ministry of Water and Irrigation and GTZ (pp. 1–97). Amman, Jordan.

Ministry of Water and Irrigation, Jordan. (2016). National water strategy of Jordan, 2016–2025. Amman, Jordan.

Mohammad, A. H., Almomani, T., & Alhejoj, I. (2015). Groundwater vulnerability for the surface outcropping aquifers in Jordan. Journal of Environmental Protection, 6(3), 250–258. https://doi.org/10.4236/jep.2015.63025

Mohammad, A. H., Hazimeh, W., Shatanawi, K., & Abualhaija, M. (2020). Quantity not quality: promoting sustainable wastewater practices in Jordan. Water Policy, 22(3), 435–448. https://doi.org/10.2166/wp.2020.195

Mohammad, A. H., Jung, H. C., Odeh, T., Bhuiyan, C., & Hussein, H. (2018). Understanding the impact of droughts in the Yarmouk Basin, Jordan: Monitoring droughts through meteorological and hydrological drought indices. Arabian Journal of Geosciences, 11(5), 103. https://doi.org/10.1007/s12517-018-3433-6

Odeh, T., Boulad, N., Abed, O., Abu Yahya, A., Khries, N., & Abu-Jaber, N. (2017). The influence of geology on landscape typology in Jordan: Theoretical understanding and planning implications. Land, 6(3), 51. https://doi.org/10.3390/land6030051

Odeh, T., Geyer, S., Rödiger, T., Siebert, C., & Schirmer, M. (2013). Groundwater chemistry of strike slip faulted aquifers: The case study of Wadi Zerka Ma’in aquifers, north east of the Dead Sea. Environmental Earth Sciences, 70, 393–406. https://doi.org/10.1007/s12665-012-2135-8

Odeh, T., Mohammad, A. H., Hussein, H., Ismail, M., & Almomani, T. (2019). Over-pumping of groundwater in Irbid governorate, northern Jordan: A conceptual model to analyze the effects of urbanization and agricultural activities on groundwater levels and salinity. Environmental Earth Sciences, 78, 40. https://doi.org/10.1007/s12665-018-8031-0

Perdew, L. (2014). Understanding Jordan today (pp. 17–18). Mitchell Lane Publishers, Inc.

Rababa’a, M., & Al-Bakri, J. (2006). Mapping the Dead Sea basin from Landsat TM satellite imagery. Dirasat, Agricultural Science, 33(2), 103–113.

Saraf, K., Choudhury, R., Roy, B., Sarma, B., Vijay, S., & Choudhury, S. (2004). GIS based surface hydrological modelling in identification of groundwater recharge zones. International Journal of Remote Sensing, 25(24), 5759–5770. https://doi.org/10.1080/0143116042000274096

Sys, C. (1975). Guidelines for the interpretation of land properties for some general land utilization types. Soils Bulletin, 29.

Sys, C., Van Ranst, E., Debaveye, J., & Beernarent, F. (1993). Land evaluation. Part III: Crop requirements. International training center for postgraduate soil scientist. Ghent University, Ghent.

US Department of Agriculture (USDA). (1993). Soil survey manual. Soil Science Division Staff. Handbook No. 18. U.S. Government Printing Office, Washington. https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/ref/?cid=nrcs142p2_054262

US Geological Survey web site. (n.d.). https://landsat.usgs.gov/lands

Yohannes, H., Soromessa, T., Argaw, M., & Dewan, A. (2020). Changes in landscape composition and configuration in the Beressa watershed, Blue Nile basin of Ethiopian Highlands: historical and future exploration. Heliyon, 6(9), e04859. https://doi.org/10.1016/j.heliyon.2020.e04859