Share:


Coping the arsenic toxicity in rice plant with magnesium addendum for alluvial soil of indo-gangetic Bengal, India

    Sonali Paul Affiliation
    ; Rupshali Dey Affiliation
    ; Ipsita Sarkar Affiliation
    ; Ankit Chakraborty Affiliation
    ; Sahil Mondal Affiliation
    ; Sreshtha Saha Affiliation
    ; Susmita Mukherjee Affiliation

Abstract

Arsenic (As3+) is a toxic metalloid found in the earth’s crust, its elevated concentration is a concern for human health because rice is the staple grain in eastern part of India and the waterlogged rice field environment provides opportunity for more As3+ uptake. Magnesium (Mg2+) is an important plant nutrient. Present work is a search for reducing As3+ toxicity in plants through Mg2+ application. The findings are quite impressive, the root to shoot biomass ratio showed more than 1.5 times increase compared to the control. Total protein content increased 2 folds. Carbohydrate and chlorophyll content increased two to three times compared to control. On the other hand, Malondialdehyde content showed a decline with the application of increased Mg2+ dose. The in-silico study shows a better interaction with As3+ in presence of Mg2+ but interestingly without stress symptoms. These findings from the research indicate that Mg2+ application can be effective in reducing As3+ induced stress in plants.

Keyword : toxicity, in-silico study, oxidative stress, cation competition, environmental sustainability, waste management technologies

How to Cite
Paul, S., Dey, R., Sarkar, I., Chakraborty, A., Mondal, S., Saha, S., & Mukherjee, S. (2021). Coping the arsenic toxicity in rice plant with magnesium addendum for alluvial soil of indo-gangetic Bengal, India. Journal of Environmental Engineering and Landscape Management, 29(4), 470–476. https://doi.org/10.3846/jeelm.2021.15469
Published in Issue
Dec 17, 2021
Abstract Views
413
PDF Downloads
328
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abedin, M. J., Cottep-Howells, J., & Meharg, A. A. (2002). Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant and Soil, 240, 311–319. https://doi.org/10.1023/A:1015792723288

Broadley, M. R., & White, P. J. (2010). Eats roots and leaves. Can edible horticultural crops address dietary calcium, magnesium and potassium deficiencies? The Proceedings of the Nutrition Society, 69, 601–612. https://doi.org/10.1017/S0029665110001588

Cakmak, I., Hengeler, C., & Marschner, H. (1994a). Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. Journal of Experimental Botany, 45, 1245–1250. https://doi.org/10.1093/jxb/45.9.1245

Cakmak, I., Hengeler, C., & Marschner, H. (1994b). Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. Journal of Experimental Botany, 45, 1251–1257. https://doi.org/10.1093/jxb/45.9.1251

Cakmak, I., & Yazici, A. M. (2010). Magnesium: a forgotten element in crop production. Better Crops with Plant Food, 94(2), 23–25.

Chandrakar, V., Naithani, S. C., & Keshavkant, S. (2016). Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review. Biologia, 71, 367–377. https://doi.org/10.1515/biolog-2016-0052

Chaudhry, Q. Schröder, P., Werck-Reichhart, D., Grajek, W., & Marecik, R. (2002). Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environmental Science and Pollution Research, 9, 4. https://doi.org/10.1007/BF02987313

da Silva, D. M., Brandão, I. R., Alves, J. D., de Santos, M. O., de Souza, K. R. D., & de Silveira, H. R. O. (2014). Physiological and biochemical impacts of magnesium-deficiency in two cultivars of coffee. Plant and Soil, 382, 133–150. https://doi.org/10.1007/s11104-014-2150-5

Ding, Y. C., Chang, C. R., Luo, W., Wu, Y. S., Ren, X. L., Wang, P., & Xu, G.-H. (2008). High potassium aggravates the oxidative stress induced by magnesium deficiency in rice leaves. Pedosphere, 18(3), 316–327. https://doi.org/10.1016/S1002-0160(08)60021-1

Ding, Q. (2002). Exchangeable magnesium content in soil and effect of magnesium on soybeannutrition along the Huaihe River in Anhui province. Anhui Agricultural Science Bulletin, 8(6), 60–62.

Farhat, N., Elkhouni, A., Zorrig, W., Smaoui, A., Abdelly, C., & Rabhi, M. (2016). Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiologie Plantarum, 38, 145. https://doi.org/10.1007/s11738-016-2165-z

Gransee, A., & Führs, H. (2013). Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant and Soil, 368, 5–21. https://doi.org/10.1007/s11104-012-1567-y

Hauer-Jákli, M., & Tränkner, M. (2019). Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: A systematic review and meta analysis from 70 years of research. Frontiers in Plant Science, 10, 766. https://doi.org/10.3389/fpls.2019.00766

Hazra, S., Henderson, J. N., Liles, K., Hilton, M. T., & Wach­ter, R. M. (2015). Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase: Product inhibition, cooperativity, and magnesium activation. Journal of Biological Chemistry, 290, 24222–24236. https://doi.org/10.1074/jbc.M115.651745

Khalid, S., Shahid, M., Niazi, N. K., Rafiq, M., Bakhat, H. F., Imran, M., Abbas, T., Bibi, I., & Dumat, C. (2017). Arsenic behaviour in soil-plant system: Biogeochemical reactions and chemical speciation influences. In Enhancing cleanup of environmental pollutants (pp. 97–140). Springer. https://doi.org/10.1007/978-3-319-55423-5_4

Kobayashi, N. I., Ogura, T., Takagi, K., Sugita, R., Suzuki, H., Iwata, R., Nakanishi, T. M., & Tanoi, K. (2018). Magnesium deficiency damages the youngest mature leaf in rice through tissue specific iron toxicity. Plant and Soil, 428, 137–152. https://doi.org/10.1007/s11104-018-3658-x

Ma, L. Q., Komart, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409, 579. https://doi.org/10.1038/35054664

Maity, K., Heumann, J. M., McGrath, A. P., Kopcho, N. J., Hsu, P. K., Lee, C. W., Mapes, J. H., Garza, D., Krishnan, S., Morgan, G. P., Hendargo, K. J., Klose, T., Rees, S. D., Medrano-Soto, A., Saier Jr M. H., Piñeros, M., Komives, E. A., Schroeder, J. I., Chang, G., & Stowell, M. H. B. (2019). Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating. PNAS, 116(28), 14309–14318. https://doi.org/10.1101/505453

Marin, A. R., Pezeshki, S. R., Masscheleyn, P. H., & Choi, H. S. (1993). Effect of dimethylarsinic acid (DMAA) on growth, tissue arsenic and photosynthesis of rice plants. Journal of Plant Nutrion, 16(5), 865–880. https://doi.org/10.1080/01904169309364580

Mengutay, M., Ceylan, Y., Kutman, U. B., & Cakmak, I. (2013). Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat. Plant and Soil, 368, 57–72. https://doi.org/10.1007/s11104-013-1761-6

Sadasivam, S., & Manickam, A. (2008). Biochemical methods. New Age International (P) Ltd. Publishers, New Delhi, India.

Shrivastava, A., Ghosh, D., Dash, A., & Bose, S. (2015). Arsenic contamination in soil and sediment in India: Sources, effects, and remediation. Current Pollution Reports, 1, 35–46. https://doi.org/10.1007/s40726-015-0004-2

Shulaev, V., Cortes, D., Miller, G., & Mittler, R. (2008). Metabolomics for plant stress response. Physiologia Plantarum, 132, 199–208. https://doi.org/10.1111/j.1399-3054.2007.01025.x

Singh, A. P., Dixit, G., Kumar, A., Mishra, S., Kumar, N., Dixit, S., Singh, P. K., Dwivedi, S., Trivedi, P. K., & Pandey, V. (2017). A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 115, 163–173. https://doi.org/10.1016/j.plaphy.2017.02.019

Scandalios, J. G. (2005). Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38, 995–1014. https://doi.org/10.1590/S0100-879X2005000700003

Tewari, R. K., Kumar, P., & Sharma, P. N. (2006). Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Scientia Horticulturae, 108(1), 7–14. https://doi.org/10.1016/j.scienta.2005.12.006

Thakur, S., Choudhary, S., Majeed, A., Singh, A., & Bhardway, P. (2020). Insights into the molecular mechanism of arsenic phytoremediation. Journal of Plant Growth Regulation, 39, 532–543. https://doi.org/10.1007/s00344-019-10019-w

Wingler, A., Brownhill, E., & Pourtau, N. (2005). Mechanisms of the lightdependent induction of cell death in tobacco plants with delayed senescence. Journal of Experimental Botany, 56, 2897–2905. https://doi.org/10.1093/jxb/eri284

Zhang, Z., & Huang, R. (2013). Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in arabidopsis seedling. Bioprotocol, 3(14), 1–8. https://doi.org/10.21769/BioProtoc.817