Share:


Accuracy of monthly and seasonal forecasts generated for the territory of Lithuania using NOAA’s Climate Forecast System version 2

Abstract

The objective of this paper is to assess the accuracy of air temperature and precipitation monthly and seasonal forecasts generated for the territory of Lithuania using the NOAA’s Climate Forecast System, version 2 (CFSv2) and to determine the atmospheric circulation conditions present at the time of initialization of the respective forecasts. The air temperature and precipitation data are obtained from three-month mean and monthly mean spatial anomalies during the period between 2012 and 2019. The accuracy of forecasts was performed in accordance with three criteria: range, state and the absolute error of the respective predicted anomaly. The study has shown that forecasts initialized 0–20 days in advance of the target month or season tend to be the most skilful. The accuracy of CFSv2 forecasts may be significantly impacted by the initial atmospheric circulation conditions present during the generation thereof. The study determined which phases of Arctic Oscillation (AO) and North Atlantic Oscillation (NAO) and which circulation types according to the Hess-Brezowsky classification are favourable/unfavourable for the monthly and seasonal forecasting of air temperature and precipitation.

Keyword : air temperature, atmospheric circulation, climate forecast system, environment monitoring, precipitations anomalies, accuracy of forecasts

How to Cite
Bukantis, A., & Valaika, G. (2021). Accuracy of monthly and seasonal forecasts generated for the territory of Lithuania using NOAA’s Climate Forecast System version 2. Journal of Environmental Engineering and Landscape Management, 29(3), 337-345. https://doi.org/10.3846/jeelm.2021.15580
Published in Issue
Oct 25, 2021
Abstract Views
597
PDF Downloads
337
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Akstinas, V., & Bukantis, A. (2015). Quasi-biennial oscillation effect on climate indicators: Lithuania’s case. Baltica, 28(1), 19–28. https://doi.org/10.5200/baltica.2015.28.03

Albers, J. R., & Newman, M. (2019). A priori identification of skillful extratropical subseasonal forecasts. Geophysical Research Letters, 46(21), 12527–12536. https://doi.org/10.1029/2019GL085270

Baker, L. H., Shaffrey, L. C., & Scaife, A. A (2018a). Improved seasonal prediction of UK regional precipitation using atmospheric circulation. International Journal of Climatology, 38(S1), e437–e453. https://doi.org/10.1002/joc.5382

Baker, L. H., Shaffrey, L. C., Sutton, R. T., Weisheimer, A., & Scaife, A. A. (2018b). An intercomparison of skill and overconfi-dence/underconfidence of the wintertime North Atlantic Oscillation in multimodel seasonal forecasts. Geophysical Research Letters, 45(15), 7808–7817. https://doi.org/10.1029/2018GL078838

Barnston, A. G., & Tippett, M. K. (2013). Predictions of Nino3.4 SST in CFSv1 and CFSv2: A diagnostic comparison. Climate Dynamics, 41, 1615–1633. https://doi.org/10.1007/s00382-013-1845-2

Bukantis, A., & Bartkeviciene, G. (2005). Thermal effects of the North Atlantic Oscillation on the cold period of the year in Lithuania. Climate Research, 25(3), 221–228. https://doi.org/10.3354/cr028221

Bukantis, A., & Paulauskaite, S. (2001). Peculiarities of annual cycle of air temperature in Klaipėda and the character of atmospheric circulation processes. Geographical Yearbook, 34(2), 5–14.

DiNezio, P. N., Deser, C., Okumura, Y., & Karspeck, A. (2017). Predictability of 2-year La Niña events in a coupled general circulation model. Climate Dynamics, 49, 4237–4261. https://doi.org/10.1007/s00382-017-3575-3

Dobrynin, M., Domeisen, D. I. V., Müller, W. A., Bell, L., Brune, S., Bunzel, F., Düsterhus, A., Fröhlich, K., Pohlmann, H., & Baehr, J. (2018). Improved teleconnection-based dynamical seasonal predictions of boreal winter. Geophysical Research Letters, 45(8), 3605–3614. https://doi.org/10.1002/2018GL077209

Ferranti, L., Corti, S., & Janousek, M. (2015). Flow-dependent verification of the ECMWF ensemble over the Euro-Atlantic sector. Quarterly Journal of the Royal Meteorological Society, 141(688), 916–924. https://doi.org/10.1002/qj.2411

Gong, H., Wang, L., Chen, W., & Nath, D. (2018). Multidecadal fluctuation of the wintertime arctic oscillation pattern and its implication. Journal of Climate, 31(14), 5595–5608. https://doi.org/10.1175/JCLI-D-17-0530.1

Hahn, L., Ummenhofer, C. C., & Kwon Y.-O. (2018). North Atlantic natural variability modulates emergence of widespread Greenland melt in a warming climate. Geophysical Research Letters, 45(17), 9171–9178. https://doi.org/10.1029/2018GL079682

Häkkinen, S., Rhines, P. B., & Worthen, D. L. (2011). Atmospheric blocking and Atlantic multidecadal ocean variability. Science, 334(6056), 655–659. https://doi.org/10.1126/science.1205683

James, P. M. (2007). An objective classification method for Hess and Brezowsky Grosswetterlagen over Europe. Theoretical and Applied Climatology, 88, 17–42. https://doi.org/10.1007/s00704-006-0239-3

Kendzierski, S., Czernecki, B., Kolendowicz, L., & Jaczewski, A. (2018). Air temperature forecasts’ accuracy of selected short-term and long-term numerical weather prediction models over Poland. Geofizika, 35(1), 19–37. https://doi.org/10.15233/gfz.2018.35.5

Kuroda, Y. (2007). Effect of QBO and ENSO on the Solar cycle modulation of winter North Atlantic Oscillation. Journal of the Meteorologi-cal Society of Japan, 85(6), 889‒898. https://doi.org/10.2151/jmsj.85.889

Labitzke, K., Kunze, M., & Bronnimann, S. (2006). Sunspots, the QBO and the stratosphere in the North Polar Region ‒ 20 years later. Mete-orologische Zeitschrift, 15(3), 355–363. https://doi.org/10.1127/0941-2948/2006/0136

Lee, D. Y., Lin, W., & Petersen, M. R. (2020a). Wintertime Arctic Oscillation and North Atlantic Oscillation and their impacts on the Northern Hemisphere climate in E3SM. Climate Dynamics, 55, 1105–1124. https://doi.org/10.1007/s00382-020-05316-0

Lee, S. H., Lawrence, Z. D., Butler, A. H., & Karpechko, A. Y. (2020b). Seasonal forecasts of the exceptional Northern Hemisphere winter of 2020. Geophysical Research Letters, 47(21), e2020GL090328. https://doi.org/10.1029/2020GL090328

Li, Y., & Lau, N. C. (2012). Contributions of downstream eddy development to the teleconnection between ENSO and the atmospheric circula-tion over the North Atlantic. Journal of Climate, 25(14), 4993–5010. https://doi.org/10.1175/JCLI-D-11-00377.1

Mariotti, A., Baggett, C., Barnes, E. A., Becker, E., Butler, A., Collins, D. C., Dirmeyer, P. A., Ferranti, L., Johnson, N. C., Jones, J., Kirtman, B. P., Lang, A. L., Molod, A., Newman, M., Robertson, A. W., Schubert, S., Waliser, D. E., & Albers, J. (2020). Windows of opportunity for skilful forecasts subseasonal to seasonal and beyond. Bulletin of the American Meteorological Society, 101(5), E608–E625. https://doi.org/10.1175/BAMS-D-18-0326.1

Mickevičius, V., & Bukantis, A. (2013). Effects of the North Atlantic Oscillation on the Lithuanian climate. Vandens ūkio inžinerija, 42(62), 5–13.

National Academies of Sciences, Engineering, and Medicine. (2016). Next Generation Earth System Prediction: Strategies for subseasonal to seasonal forecasts. The National Academies Press. https://doi.org/10.17226/21873

Nie, Y., Scaife, A. A., Ren, H.-L., Comer, R. E., Andrews, M. B., Davis, P., & Martin, N. (2019). Stratospheric initial conditions provide seasonal predictability of the North Atlantic and Arctic Oscillations. Environmental Research Letters, 14(3), 034006. https://doi.org/10.1088/1748-9326/ab0385

National Oceanic and Atmospheric Administration. Climate Prediction Center. National Weather Service. (2020a). North Atlantic Oscillation (NAO). http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml

National Oceanic and Atmospheric Administration. Climate Prediction Center. National Weather Service. (2020b). Arctic Oscillation (AO). http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml

National Oceanic and Atmospheric Administration. Climate Prediction Center. National Weather Service. NOAA CPC NWS. (2020c). Season-al climate forecast from CFSv2. http://www.cpc.ncep.noaa.gov/products/CFSv2/CFSv2seasonal.shtml

Orniwetter. (2020). Wetterportal. http://www.orniwetter.info/wetterlagenkalender/

Parker, T., Woollings, T., Weisheimer, A., O’Reilly, C. H., Baker, L., & Shaffrey, L. (2019). Seasonal predictability of the winter North Atlan-tic Oscillation from a jet stream perspective. Geophysical Research Letters, 46(16), 10159–10167. https://doi.org/10.1029/2019GL084402

Peng, P., Barnston, A. G., & Kumar, A. (2013). A comparison of skill between two versions of the NCEP climate forecast system (CFS) and CPC’s operational short-lead seasonal outlooks. Weather Forecast, 28(2), 445–462. https://doi.org/10.1175/WAF-D-12-00057.1

Planchon, O., Quénol, H., Dupont, N., & Corgne, S. (2009). Application of the Hess-Brezowsky classification to the identification of weather patterns causing heavy winter rainfall in Brittany (France). Natural Hazards Earth System Sciences, 9(4), 1161–1173. https://doi.org/10.5194/nhess-9-1161-2009

Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill, D. O., Coen, J. L., Gochis, D. J., Ahmadov, R., Peckham, S. E., Grell, G. A., Michalakes, J., Trahan, S., Benjamin, S. G., Alexander, C. R., Dimego, G. J., Wang, W., Schwartz, C. S., Romine, G. S., Liu, Z., Snyder, C., Chen, F., Barlage, M. J., Yu, W., & Duda, M. G. (2017). The weather research and forecasting (WRF) model: Overview, system efforts, and future directions. Bulletin of the American Meteorological Society, 98(8), 1717–1737. https://doi.org/10.1175/BAMS-D-15-00308.1

Reeves, R. W., & Gemmill, D. D. (2004). Reflections on 25 years of analysis, diagnosis, and prediction. National Oceanic and Atmospheric Administration. Climate Prediction Center. US Government Printing Office.

Rimkus, E., Kazys, J., Bukantis, A., & Krotovas, A. (2011). Temporal variation of extreme precipitation events in Lithuania. Oceanologia, 53(Suppl. 1), 259‒277. https://doi.org/10.5697/oc.53-1-TI.259

Saha, S., Nadiga, S., Thiaw, C., Wang, J., Wang, W., Zhang, Q., Van den Dool, H. M., Pan, H.-L., Moorthi, S., Behringer, D., Stokes, D., Peña, M., Lord, S., White, G., Ebisuzaki, W., Peng, P., & Xie, P. (2006). The NCEP Climate Forecast System. Journal of Climate, 19(15), 3483–3517. https://doi.org/10.1175/JCLI3812.1

Saha, S., Van den Dool, H. M., Zhang, Q., Mendez, M. P., & Becker, E. (2013). NCEP Climate Forecast System version 2 (CFSv2) in the context of the US National Multi Model Ensemble (NMME) for seasonal prediction. In ECMWF Seminar on Seasonal Prediction, 3–7 September 2012, Shinfield Park, Reading (pp. 269–272). https://www.ecmwf.int/node/12062

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou Y.-T., Chuang, H., Ek, M. I. M., Meng, J., Yang, R., Mendez, M. P., Van den Dool, H. M., Zhang, Q., Wang, W., Chen, M., & Becker, E. (2014). The NCEP Climate Forecast System version 2. Journal of Climate, 27(6), 2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1

Scaife, A. A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R. T., Dunstone, N., Eade, R., Fereday, D., Folland, C. K., Gordon, M., Her-manson, L., Knight, J. R., Lea, D. J., MacLachlan, C., Maidens, A., Martin, M., Peterson, A. K., Smith, D., Vellinga, M., Wallace, E., Wa-ters, J., & Williams, A. (2014). Skillful long-range prediction of European and North American winters. Geophysical Research Letters, 41(7), 2514–2519. https://doi.org/10.1002/2014GL059637

Sigmond, M., Scinocca, J. F., Kharin, V. V., & Shepherd, T. G. (2013). Enhanced seasonal forecast skill following stratospheric sudden warmings. Nature Geoscience, 6(2), 98–102. https://doi.org/10.1038/ngeo1698

Tian, D., Martinez, C. J., Graham, W. D., & Hwang, S. (2014). Statistical downscaling multimodel forecasts for seasonal precipitation and surface temperature over the Southeastern United States. Journal of Climate, 27(22), 8384–8411. https://doi.org/10.1175/JCLI-D-13-00481.1

Thompson, D. W. J., & Wallace, J. M. (2000). Annular modes in the extratropical circulation. Part I: Month-to-month variability. Journal of Climate, 13(5), 1000–1016.

Troccoli, A. (2010). Seasonal climate forecasting. Meteorological Applications, 17(3), 251–268. https://doi.org/10.1002/met.184

Wang, D., Wang, C., Yang, X., & Lu, J. (2005). Winter Northern Hemisphere surface air temperature variability associated with the Arctic Oscillation and North Atlantic Oscillation. Geophysical Research Letters, 32(16), 1–4. https://doi.org/10.1029/2005GL022952

Weart, S. R. (2008). The discovery of global warming. Revised and Expanded Edition. https://doi.org/10.4159/9780674417557

Weisheimer, A., & Palmer, T. N. (2014). On the accuracy of seasonal climate forecasts. Journal of the Royal Society. Interface, 11, 20131162. https://doi.org/10.1098/rsif.2013.1162

Werner, P. C., & Gerstengarbe, F.-W. (2010). Katalog der Großwetterlagen Europas (1881‒2009) Nach Paul Hess und Helmuth Brezowsky. Potsdam Institut für Klimafolgenforschung, Potsdam. https://www.pik-potsdam.de/en/output/publications/pikreports/summary-report-no.-119

Woollings, T., & Blackburn, M. (2012). The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns. Jour-nal of Climate, 25(3), 886–902. https://doi.org/10.1175/JCLI-D-11-00087.1

Yuan, X., Wood, E. F., Luo, L., & Pan, M. (2011). A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal pre-diction. Geophysical Research Letters, 38(13), L13402. https://doi.org/10.1029/2011GL047792