Share:


Acetylcholinesterase, as a potential biomarker of naphthalene toxicity in different tissues of freshwater teleost, Anabas testudineus

    Susri Nayak Affiliation
    ; Lipika Patnaik Affiliation

Abstract

Naphthalene, a Polycyclic Aromatic Hydrocarbon is widely used as a fumigant and disinfectant despite its toxic effect and is ranked as the ninth most threatening compound. The present study was carried out to determine the in vivo effect of naphthalene at different concentrations on acetylcholinesterase (AChE) enzyme activity in different tissues of Anabas testudineus. The fishes were exposed to varying concentrations of naphthalene (4.2 mgL–1, 4.4 mgL–1, 4.6 mgL–1, 4.8 mgL–1 and 5 mgL–1) for a period of 72 hours. Acetylcholinesterase enzyme activity was found to be significantly inhibited, in a dose-response manner. The inhibition percentage of AChE activity varied from 9.34–43.95% in brain tissue, 2.56–35.81% in liver tissue, 5.94–34.15% in muscle tissue and 3.92–33.75% in gills in comparison to the tissues of the control group. Maximum inhibition of acetylcholinesterase enzyme activity in treated fish was observed in the brain followed by liver, muscles, and gills. This study highlights the significance and role of acetylcholinesterase as a potential stress biomarker of naphthalene toxicity.

Keyword : naphthalene, polycyclic aromatic hydrocarbons, Anabas, acetylcholinesterase, biomarker, environmental monitoring

How to Cite
Nayak, S., & Patnaik, L. (2021). Acetylcholinesterase, as a potential biomarker of naphthalene toxicity in different tissues of freshwater teleost, Anabas testudineus. Journal of Environmental Engineering and Landscape Management, 29(4), 403–409. https://doi.org/10.3846/jeelm.2021.15808
Published in Issue
Nov 29, 2021
Abstract Views
622
PDF Downloads
447
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Al-Ghais, S. M. (2013). Acetylcholinesterase, glutathione and hepatosomatic index as potential biomarkers of sewage pollution and depuration in fish. Marine Pollution Bulletin, 74(1), 183–186. https://doi.org/10.1016/j.marpolbul.2013.07.005

Aly, S. T., Kanaan, D. M., El-Dieb, A. S., & Abu-Eishah, S. I. (2018). Properties of ceramic waste powder-based geopolymer concrete. In International Congress on Polymers in Concrete (ICPIC 2018) (pp. 429–435). Springer. https://doi.org/10.1007/978-3-319-78175-4_54

American Public Health Association. (2005). Standard methods for the examination of water and wastewater. American Public Health Association/American Water Works Association/Water Environment Federation. Washington, DC.

Ansari, Z. A., Farshchi, P., & Faniband, M. (2010). Naphthalene induced activities on growth, respiratory metabolism and biochemical composition in juveniles of Metapenaeus affinis (H. Milne Edward, 1837). Indian Journal of Marine Sciences, 39(2), 285–289.

Armstrong, B., Hutchinson, E., Unwin, J., & Fletcher, T. (2004). Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: A review and meta-analysis. Environmental Health Perspectives, 112(9), 970–978. https://doi.org/10.1289/ehp.6895

Athira, N., & Jaya, D. S. (2018). The use of fish biomarkers for assessing textile effluent contamination of aquatic ecosystems: A review. Nature Environment and Pollution Technology, 17(1), 25–34.

Balakumaran, M., Cyril Xavier, T., Ponmathan, K. P., Pra­veen, K. J., & Ganesh K. M. (2015). Comparative studies on floor tiles using geopolymer concrete and cement concrete. International Journal of Engineering Research & Technology, 3(11), 1–4.

Buet, A., Banas, D., Vollaire, Y., Coulet, E., & Roche, H. (2006). Biomarker responses in European eel (Anguilla anguilla) exposed to persistent organic pollutants. A field study in the Vaccarès lagoon (Camargue, France). Chemosphere, 65(10), 1846–1858. https://doi.org/10.1016/j.chemosphere.2006.03.074

de Castilhos Ghisi, N. (2012). Relationship between biomarkers and pesticide exposure in fishes: A review. In R. P. Soundararajan (Ed.), Pesticides – Advances in chemical and botanical pesticides (pp. 357–382). InTech. https://doi.org/10.5772/48604

DeGraeve, G. M., Elder, R. G., Woods, D. C., & Bergman, H. L. (1982). Effects of naphthalene and benzene on fathead minnows and rainbow trout. Archives of Environmental Contamination and Toxicology, 11(4), 487–490. https://doi.org/10.1007/BF01056076

Dey, S., Samanta, P., Mondal, N. S., Kole, D., Mandal, A., Patra, A., & Ghosh, A. R. (2019). Dose specific responses of Anabas testudineus (Bloch) to anthracene (PAH): Haematological and biochemical manifestation. Emerging Contaminants, 5, 232–239. https://doi.org/10.1016/j.emcon.2019.07.001

Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9

Finney, D. J. (1971). Probit analysis (3rd ed.). Cambridge University Press.

Fulton, M. H., & Key, P. B. (2001). Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environmental Toxicology and Chemistry: An International Journal, 20(1), 37–45. https://doi.org/10.1002/etc.5620200104

Gupta, V. K., Kumar, A., Yadav, S. H., Pandey, R., & Sharma, B. (2017). Acetylcholinesterase as a biomarker of arsenic induced cardiotoxicity in mammals. Science International, 5(4), 142–149. https://doi.org/10.17311/sciintl.2017.142.149

Hauser-Davis, R. A., Lopes, R. M., & Ziolli, R. L. (2019). Inihibition of mullet (M. liza) brain acetylcholinesterase activity by in vitro polycyclic aromatic hydrocarbon exposure. Marine Pollution Bulletin, 140, 30–34. https://doi.org/10.1016/j.marpolbul.2019.01.027

Hossain, M. A., Yeasmin, F., Rahman, S. M., & Rana, S. (2014). Naphthalene, a polycyclic aromatic hydrocarbon, in the fish samples from the Bangsai river of Bangladesh by gas chromatograph–mass spectrometry. Arabian Journal of Chemistry, 7(6), 976–980. https://doi.org/10.1016/j.arabjc.2010.12.014

Jebali, J., Khedher, S. B., Sabbagh, M., Kamel, N., Banni, M., & Boussetta, H. (2013). Cholinesterase activity as biomarker of neurotoxicity: Utility in the assessment of aquatic environment contamination. Revista de Gestão Costeira Integrada-Journal of Integrated Coastal Zone Management, 13(4), 525–537. https://doi.org/10.5894/rgci430

Kopecka-Pilarczyk, J., & Correia, A. D. (2011). Effects of exposure to PAHs on brain AChE in gilthead seabream, Sparus aurata L., under laboratory conditions. Bulletin of Environmental Contamination and Toxicology, 86(4), 379–383. https://doi.org/10.1007/s00128-011-0234-y

Latimer, J. S., & Zheng, J. (2003). The sources, transport, and fate of PAHs in the marine environment. In P. E. T. Douben (Ed.), PAHs: An ecological perspective (pp. 9–33). John Wiley & Sons Inc.

Lionetto, M. G., Caricato, R., Calisi, A., Giordano, M. E., & Schettino, T. (2013). Acetylcholinesterase as a biomarker in environmental and occupational medicine: New insights and future perspectives. BioMed Research International, 2013, 321213. https://doi.org/10.1155/2013/321213

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

Mary, S. C. H., Silvan, S., & Elumalai, E. K. (2014). Toxicology study on lead nitrate induced fresh water fish Cirrhinus mrigala (Hamilton). European Journal of Academic Essays, 1(7), 5–8.

Mehra, S., & Chadha, P. (2020). Bioaccumulation and toxicity of 2-naphthalene sulfonate: An intermediate compound used in textile industry. Toxicology Research, 9(2), 127–136. https://doi.org/10.1093/toxres/tfaa008

Oropesa, A. L., Pérez-López, M., Hernández, D., García, J. P., Fidalgo, L. E., López-Beceiro, A., & Soler, F. (2007). Acetylcholinesterase activity in seabirds affected by the Prestige oil spill on the Galician coast (NW Spain). Science of the Total Environment, 372(2–3), 532–538. https://doi.org/10.1016/j.scitotenv.2006.09.006

Palanikumar, L., Kumaraguru, A. K., & Ramakritinan, C. M. (2013). Biochemical and genotoxic response of naphthalene to fingerlings of milkfish Chanos chanos. Ecotoxicology, 22(7), 1111–1122. https://doi.org/10.1007/s10646-013-1098-1

Panda, B. S., & Mahanta, S. K. (2020). Quantification of poly aromatic hydrocarbons in waters of Mahanadi estuary at Paradeep, Odisha. International Research Journal of Engineering and Technology, 7(6), 6971–6981.

Patnaik, L., Raut, D., Panda, D., & Nayak, S. (2016). Naphthalene induced Biochemical changes in Anabas testudineus. Journal of Biodiversity and Environment Sciences, 8(2), 154–158.

Payne, J. F., Mathieu, A., Melvin, W., & Fancey, L. L. (1996). Acetylcholinesterase, an old biomarker with a new future? Field trials in association with two urban rivers and a paper mill in Newfoundland. Marine Pollution Bulletin, 32(2), 225–231. https://doi.org/10.1016/0025-326X(95)00112-Z

Pereira, V. M., Bortolotto, J. W., Kist, L. W., de Azevedo, M. B., Fritsch, R. S., da Luz Oliveira, R., Pereira, T. C. B., Bonan, C. D., Vianna, M. R., & Bogo, M. R. (2012). Endosulfan exposure inhibits brain AChE activity and impairs swimming performance in adult zebrafish (Danio rerio). Neurotoxicology, 33(3), 469–475. https://doi.org/10.1016/j.neuro.2012.03.005

Pikkarainen, A. L. (2006). Ethoxyresorufin-O-deethylase (EROD) activity and bile metabolites as contamination indicators in Baltic Sea perch: Determination by HPLC. Chemosphere, 65(10), 1888–1897. https://doi.org/10.1016/j.chemosphere.2006.03.066

Podolska, M., & Napierska, D. (2006). Acetylcholinesterase activity in hosts (herring Clupea harengus) and parasites (Anisakis simplex larvae) from the southern Baltic. ICES Journal of Marine Science, 63(1), 161–168. https://doi.org/10.1016/j.icesjms.2005.08.001

Rani, S., Gupta, R. K., & Yadav, J. (2017). Heavy metal induced alterations in acetylcholinesterase activity of Indian major carps. Journal of Entomology and Zoology Studies, 5(4), 818–821.

Rickwood, C. J., & Galloway, T. S. (2004). Acetylcholinesterase inhibition as a biomarker of adverse effect: A study of Mytilus edulis exposed to the priority pollutant chlorfenvinphos. Aquatic Toxicology, 67(1), 45–56. https://doi.org/10.1016/j.aquatox.2003.11.004

Şen, G., & Karaytuğ, S. (2017). Effects of lead and selenium interaction on acetylcholinesterase activity in brain and accumulation of metal in tissues of Oreochromis niloticus (L., 1758). Natural and Engineering Sciences, 2(2), 21–32. https://doi.org/10.28978/nesciences.328857

Sharbidre, A. A., Metkari, V., & ka Patode, P. (2011). Effect of diazinon on acetylcholinesterase activity and lipid peroxidation of Poecilia reticulate. Research Journal of Environmental Toxicology, 5(2), 152–161. https://doi.org/10.3923/rjet.2011.152.161

Shenai, V. A. (2001). Non-ecofriendly textile chemicals and their probable substitutes – An overview. Indian Journal of Fibre and Textile Research, 26, 50–54.

Sivaram, N. M., Gopal, P. M., & Barik, D. (2019). Toxic waste from textile industries. In Energy from toxic organic waste for heat and power generation (pp. 43–54). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102528-4.00004-3

Sogbanmu, T. O., Osibona, A. O., Oguntunde, O. A., & Otitoloju, A. A. (2018). Biomarkers of toxicity in Clarias gariepinus exposed to sublethal concentrations of polycyclic aromatic hydrocarbons. African Journal of Aquatic Science, 43(3), 281–292. https://doi.org/10.2989/16085914.2018.1491825

Sturm, A., De Assis, H. D. S., & Hansen, P. D. (1999). Cholinesterases of marine teleost fish: Enzymological characterization and potential use in the monitoring of neurotoxic contamination. Marine Environmental Research, 47(4), 389–398. https://doi.org/10.1016/S0141-1136(98)00127-5

Topal, A., Şişecioğlu, M., Atamanalp, M., Işık, A., & Yılmaz, B. (2016). The in vitro and in vivo effects of chlorpyrifos on acetylcholinesterase activity of rainbow trout brain. Journal of Applied Animal Research, 44(1), 243–247. https://doi.org/10.1080/09712119.2015.1031776

Walker, C. H., Sibly, R. M., Hopkin, S. P., & Peakall, D. B. (2012). Principles of ecotoxicology (4th ed.). CRC Press.

Whittaker, M. (1980). Plasma cholinesterase variants and the anaesthetist. Anaesthesia, 35(2), 174–197. https://doi.org/10.1111/j.1365-2044.1980.tb03800.x

Vijayavel, K., Anbuselvam, C., Balasubramanian, M. P., Samuel, V. D., & Gopalakrishnan, S. (2006). Assessment of biochemical components and enzyme activities in the estuarine crab Scylla tranquebarica from naphthalene contaminated habitants. Ecotoxicology, 15(5), 469–476. https://doi.org/10.1007/s10646-006-0082-4

Zhang, Y. M., Guo, G. Z., La Zhang, L., & Song, J. H. (2019). Synthesis, analysis and application of naphthalene sulfonic acid formaldehyde condensate. In IOP Conference Series: Earth and Environmental Science, 237(2). IOP Publishing. https://doi.org/10.1088/1755-1315/237/2/022029

Zulfahmi, I., Muliari, M., Akmal, Y., & Batubara, A. S. (2018). Reproductive performance and gonad histopathology of female Nile tilapia (Oreochromis niloticus Linnaeus 1758) exposed to palm oil mill effluent. The Egyptian Journal of Aquatic Research, 44(4), 327–332. https://doi.org/10.1016/j.ejar.2018.09.003