Share:


Evaluation of soil quality of a coal mine affected forest at Changki, Nagaland, India

    Khikeya Semy Affiliation
    ; M. R. Singh Affiliation
    ; Nishant Vats Affiliation

Abstract

The present study was conducted at a coal mining affected forest and a non-affected forest to analyze the seasonal changes in soil physico-chemical properties, incorporate additive and weighted soil quality index (SQI) to determine the soil quality and check the affected forest soil pollution status. Comparative SQI shows that the non-affected forest presented higher SQI in all the seasons (winter, spring, summer and autumn). However, in both the forest the seasonal additive and weighted SQI was categorised as autumn > summer > spring > winter and the overall SQI of the soil depth was ranked as 0–10 > 10–20 > 20–30 cm. The Single pollution index (PI) points out that cadmium (Cd) was the main potential contributor to soil pollution while the Pollution load index (PLI) and Nemerow integrated pollution index (NIPI) revealed moderate soil pollution status. The result summarized that coal mining activities can elevate soil deterioration rate, such as loss in soil organic carbon, reduction in nutrient availability, and slowing down the rejuvenating process of forest soil.

Keyword : Changki forest, coal mines, pollution indices, soil quality indicators, weighted and additive SQI

How to Cite
Semy, K., Singh, M. R., & Vats, N. (2021). Evaluation of soil quality of a coal mine affected forest at Changki, Nagaland, India. Journal of Environmental Engineering and Landscape Management, 29(4), 381–390. https://doi.org/10.3846/jeelm.2021.15848
Published in Issue
Nov 22, 2021
Abstract Views
894
PDF Downloads
696
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Adetunji, A. R., Sinyanbola, W. O., Funtua, I. I., Olusunle, S. O. O., Afonja, A. A., & Adewoye, O. O. (2005). Assessment of beneficiation routes of Tantalite ores from key locations in Nigeria. Journal of Mineral Material Characterization and Engineering, 4(2), 85–93. https://doi.org/10.4236/jmmce.2005.42008

Ahirwal, J., & Maiti, S. K. (2017). Assessment of carbon sequestration potential of revegetated coal mine overburden dumps: A chronose-quence study from dry tropical climate. Journal of Environmental Management, 201, 369–377. https://doi.org/10.1016/j.jenvman.2017.07.003

Ahirwal, J., & Maiti, S. K. (2018). Development of Technosol properties and recovery of carbon stock after 16 years of revegetation on coal mine degraded lands, India. Catena, 166, 114–123. https://doi.org/10.1016/j.catena.2018.03.026

Ahirwal, J., Maiti, S. K., & Singh, A. K. (2017). Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India. Science of the Total Environment, 583, 153–162. https://doi.org/10.1016/j.scitotenv.2017.01.043

Allen, S. E. (1989). Chemical analysis of ecological materials (2nd ed.). Blackwell Scientific Publications.

Andrews, S. S., Flora, C. B., Mitchell, J. P., & Karlen, D. L. (2003). Grower’s perceptions and acceptance of soil quality indices. Geoderma, 114(3–4), 187–213. https://doi.org/10.1016/S0016-7061(03)00041-7

Andrews, S. S., Karlen, D. L., & Mitchell, J. P. (2002). A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems and Environment, 90(1), 25–45. https://doi.org/10.1016/S0167-8809(01)00174-8

Ang, H. H., & Lee, K. L. (2005). Analysis of mercury in Malaysian herbal preparations: A peer review. Journal of Biomedical Sciences, 4(1), 31–36. http://www.bioline.org.br/pdf?jm05004

Anwana, E. D., Ita, R. E., & Mbong, E. O. (2018). Spatial concentrations of heavy metals in soils and plants of a landfill site in Uyo, Akwa Ibom state. Cancer Biology, 8(1), 144–149. https://doi.org/10.7537/marscbj080118.09

Armenise, E., Redmile-Gordon, A. M., Stellacci, A., Ciccarese, A., & Rubino, C. P (2013). Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil & Tillage Research, 130, 91–98. https://doi.org/10.1016/j.still.2013.02.013

Bhardwaj, A. K., Jasrotia, P., Hamilton, S. K., & Robertson, G. P. (2011). Ecological management of intensively cropped agro-ecosystems improves soil quality with sustained productivity. Agricultural Ecosystem and Environment, 140(3–4), 419–429. https://doi.org/10.1016/j.agee.2011.01.005

Bhuiyan, M. A. H., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173(1–3), 384–392. https://doi.org/10.1016/j.jhazmat.2009.08.085

Boruah, D. H. P. (2006). North eastern coal and environment: An overview. In Proceedings on Characterization and Gainful Utilisation of North Eastern Coalfields of Coal India (CGU’06) (pp. 28–33), RRL, Jorhat.

Bower, C. A., Reitemeier, R. F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73(4), 251–262. https://doi.org/10.1097/00010694-195204000-00001

Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Sciences, 59(1), 39–46. https://doi.org/10.1097/00010694-194501000-00006

Brzezinska, M., Sokolowska, Z., Alekseeva, T., Alekseev, A., Hajnos, M., & Szarlip, P. (2011). Some characteristics of organic soils irigated with municipal wastewater. Land Degradation and Development, 22(6), 586–595. https://doi.org/10.1002/ldr.1036

Department of Agriculture and Cooperation Ministry of Agriculture, Government of India. (2011). Methods manual soil testing in India. New Delhi.

Estrada-Herrera, I. R., Hidalgo-Moreno, C., Guzmán-Plazola, R., Almaraz Suárez, J. J., Navarro-Garza, H., & Etchevers-Barra, J. D. (2017). Soil quality indicators to evaluate soil fertility. Agrociencia, 51(8), 813–831.

Feiza, V., Feiziene, D., Kadziene, G., Lazauskas, S., Deveikyte, I., Slepetiene, A., & Seibutis, V. (2011). Soil state in the 11th year of three tillage systems application on a cambisol. Journal of Food, Agriculture and Environment, 9(3–4), 1088–1095.

Glover, J. D., Reganold, J. P., & Andrews, P. K. (2000). Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agriculture, Ecosystems and Environment, 80(1–2), 29–45. https://doi.org/10.1016/S0167-8809(00)00131-6

Guo, X. M., Zhao, T. Q., Chang, W. K., Xiao, C. Y., & He, Y. X. (2018). Evaluating the effect of coal mining subsidence on the agricultural soil quality using principal component analysis. Chilean Journal of Agricultural Research, 78(2), 173–182. https://doi:10.4067/S0718-58392018000200173

Ita, R. E., & Anwana, E. D. (2017). Geochemical assessment of heavy metals contamination in rural and urban wetlands in Akwa Ibom State, Nigeria. New York Science Journal, 10(11), 43–51. http://www.sciencepub.net/newyork/ny101117/06_32114nys101117_43_51.pdf

Jung, M. C. (2001). Heavy metal contamination of soils and waters in and around the Imcheon Au–Ag mine, Korea. Applied Geochemistry, 16(11–12), 1369–1375. https://doi.org/10.1016/S0883-2927(01)00040-3

Kabata-Pendias, A. (2010). Trace elements in soils and plants (4th ed.). CRC Press.

Kassambara, A., & Mundt, F. (2020). Factoextra: Extract and visualize the results of multivariate data analyses (R package version 1.0.7). https://CRAN.R-project.org/package=factoextra

Kjeldahl, J. (1883). Neue methode zur bestimmung des stickstoffs in organischen korpern [New method for the determination of nitrogen in organic substances]. Zeitschrift für analytische Chemie, 22(1), 366–382. https://doi.org/10.1007/BF01338151

Lacutusu, R. (2000). Appraising levels of soil contamination and pollution with heavy metals. In H. J. Heinike, W. Eckselman, A. J. Thomas-son, R. J. A. Jones, L. Montanarella, & B. Buckley (Eds.), Land information systems developments for planning the sustainable use of land resources Luxembourg (Research Report No. 4, pp. 393–402). European Soil Bureau.

Ladwani, K. D., Ladwani, K. D., Manik, V. S., & Ramteke, D. S. (2012). Assessment of heavy metal contaminated soil near coal mining area in Gujarat by toxicity characteristics leaching procedure. International Journal of Life Sciences Biotechnology and Pharma Research, 1(4), 73–80.

Lindenmayer, D., & Burgman, M. (2005). Practical conservation biology. CSIRO Publishing.

Liu, Z., Zhou, W., Shen, J., Li, S., & Ai, C. (2014). Soil quality assessment of yellow clayey paddy soils with different productivity. Biology and Fertility of Soils, 50(3), 537–548. https://doi.org/10.1007/s00374-013-0864-9

Maiti, S. K. (2007). Bioreclamation of coalmine overburden dumps–with special emphasis on micronutrients and heavy metals accumulation in tree species. Environmental Monitoring and Assessesment, 125, 111–122. https://doi.org/10.1007/s10661-006-9244-3

Maiti, S. K. (2013). Ecorestoration of the coalmine degraded lands. Springer Science & Business Media. https://doi.org/10.1007/978-81-322-0851-8

Mandal, U. K., Warrington, D. N., Bhardwaj, A. K., Bar-Tal, A., Kautsky, L., Minz, D., & Levy, G. J. (2008). Evaluating impact of irrigation water quality on a calcareous clay soil using principal component analysis. Geoderma, 144(1–2), 189–197. https://doi.org/10.1016/j.geoderma.2007.11.014

Manna, A., & Maiti, R. (2018). Geochemical contamination in the mine affected soil of Raniganj Coalfield – A river basin scale assessment. Geoscience Frontiers, 9(5), 1577–1590. https://doi.org/10.1016/j.gsf.2017.10.011

Marbaninang, D., Das, P., & Chaturvedi, S. S. (2014). Assessment of heavy metal pollution in abandoned coal stockpile and Lime Kiln of Meghalaya using Pollution Load Index (PLI) and Geoaccumulation Index (I-Geo). International Journal of Science and Research, 3(9), 886–891.

Marzaioli, R., D’Ascoli, R., De Pascale, R. A., & Rutigliano, F. A. (2010). Soil quality in a Mediterranean area of Southern Italy as related to different land use types. Applied Soil Ecology, 44(3), 205–212. https://doi.org/10.1016/j.apsoil.2009.12.007

Masto, R. E., Chhonkar, P. K., Singh, D., & Patra, A. K. (2008). Alternative soil quality indices for evaluating the effect of intensive cropping, fertilisation and manuring for 31 years in the semi-arid soils of India. Environmental Monitoring and Assessment, 136, 419–435. https://doi.org/10.1007/s10661-007-9697-z

Mishra, G., Marzaioli, R., Giri, K., & Pandey, S. (2019). Soil quality assessment across different stands in tropical moist deciduous forests of Nagaland, India. Journal of Forestry Research, 30, 1479–1485. https://doi.org/10.1007/s11676-018-0720-8

Misra, R. (1968). Ecology work book. Oxford and IBH Publishing Co.

Moffat, A. J. (2003). Indicators of soil quality for UK forestry. Forestry, 76(5), 547–568. https://doi.org/10.1093/forestry/76.5.547

Mukhopadhyay, S., & Maiti, S. K. (2011). Trace metal accumulation and natural mycorrhizal colonisation in an afforested coalmine overburden dump: A case study from India. International Journal of Mining, Reclamation and Environment, 25(2), 187–207. https://doi.org/10.1080/17480930.2010.548663

Mukhopadhyay, S., Maiti, S. K., & Masto, R. E. (2013). Use of Reclaimed Mine Soil Index (RMSI) for screening of tree species for reclama-tion of coal mine degraded land. Ecological Engineering, 57, 133–142. https://doi.org/10.1016/j.ecoleng.2013.04.017

Mukhopadhyay, S., Maiti, S. K., & Masto, R. E. (2014). Development of mine soil quality index (MSQI) for evaluation of reclamation success: A chronosequence study. Ecological Engineering, 71, 10–20. https://doi.org/10.1016/j.ecoleng.2014.07.001

Mukhopadhyay, S., Masto, R., Yadav, A., Joshy, G., Lal, R., & Shukla, S. P. (2016). Soil quality index for evaluation of reclaimed coal mine spoil. Science of the Total Environment, 542, 540–550. https://doi.org/10.1016/j.scitotenv.2015.10.035

Nabiollahi, K., Taghizadeh-Mehrjardi, R., Kerry, R., & Mora­dian, S. (2017). Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecological Indicators, 83, 482–494. https://doi.org/10.1016/j.ecolind.2017.08.001

Nemerow, N. L. (1985). Stream, lake, estuary, and ocean pollution. Van Nostrand Reinhold Publishing.

Niu, S., Gao, L., & Zhao, J. (2015). Distribution and risk assessment of heavy metals in the Xinzhuangzi reclamation soil from the Huainan coal mining area, China. Human and Ecological Risk Assessment, 21(4), 900–912. https://doi.org/10.1080/10807039.2014.943572

Nwankwoala, H. O., & Ememu, A. J. (2018). Contamination indices and heavy metal concentrations in soils in Okpoko and Environs, South-eastern Nigeria. Journal of Environmental Science and Public Health, 2(2), 77–95. https://doi.org/10.26502/jesph.96120031

Piper, C. S. (1942). Soil and plant analysis: Laboratory manual of methods for the examination of soils and the determination of the inorganic constituents of plants. Hassell Press.

Rai, A. K., Paul, B., & Singh, G. (2011). A study on physico chemical properties of overburden dump materials from selected coal mining areas of Jharia coalfields, Jharkhand, India. International Journal of Environmental Sciences, 1(6), 1350–1360.

Raj, D., Kumar, A., & Maiti, S. K. (2019). Evaluation of toxic metal(loid)s concentration in soils around an open-cast coal mine (Eastern India). Environment Earth Sciences, 78(22), 645. https://doi.org/10.1007/s12665-019-8657-6

Razo, I., Carrizales, L., Castro, J., Díaz-Barriga, F., & Monroy, M. (2004). Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water, Air, and Soil Pollution, 152, 129–152. https://doi.org/10.1023/B:WATE.0000015350.14520.c1

RStudio Team. (2020). RStudio: Integrated development environment for R. Boston, MA. http://www.rstudio.com

Sarma, K. (2002). Coal mining and its impact on environment of Nokrek biosphere reserve, Meghalaya [PhD thesis, Department of Geography, North Eastern Hill University, Shillong]. https://shodhganga.inflibnet.ac.in/handle/10603/60712

Sharma, K. L., Mandal, U. K., Srinivas, K., Vittal, K. P. R., Mandal, B., Grace, J. K., & Ramesh, V. (2005). Long-term soil management effects on crop yields and soil quality in a dryland Alfisol. Soil and Tillage Research, 83(2), 246–259. https://doi.org/10.1016/j.still.2004.08.002

Talukdar, B., Kalita, H. K., Basumatary, S., & Sarma, D. (2016). Impact of coal mining on soil characteristics of Simsang river, Meghalaya, India. Journal of Fundamental of Renewable Energy, 6(6), 45–86.

Tapadar, S. A., & Jha, D. K. (2015). Influence of open cast mining on the soil properties of Ledo Colliery of Tinsukia district of Assam, India. International Journal of Scientific and Research Publications, 5(3), 1–4.

Thomilson, D. C., Wilson, D. J., Harris, C. R., & Jeffrey, D. W. (1980). Problem in heavy metals in estuaries and the formation of pollution index. Helgolander Meeresunters, 33, 566–575. https://doi.org/10.1007/BF02414780

Triantafyllidis, V., Kosma, A. K. C., & Patakas, A. (2018). An assessment of the soil quality index in a Mediterranean agro ecosystem. Emir-ates Journal of Food and Agriculture, 30(12), 1042–1050. https://doi.org/10.9755/ejfa.2018.v30.i12.1886

Trivedy, R. K., & Goel, P. K. (1986). Chemical and biological methods for water pollution studies. Environmental Publication. Karad.

Vasu, D., Singh, S. K., Ray, S. K., Duraisami, V. P., Tiwary, P., Chandran, P., Nimkar, A. M., & Anantwar, S. G. (2016). Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma, 282, 70–79. https://doi.org/10.1016/j.geoderma.2016.07.010

Walkley, A., & Armstrong Black, I. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed mod-ification of the chromic acid titration method. Soil Sciences, 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003

Yu, P. J., Liu, S. W., Zhang, L., Li, Q., & Zhou, D. W. (2018). Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Science of the Total Environment, 616, 564–571. https://doi.org/10.1016/j.scitotenv.2017.10.301