Share:


Possible impacts of COVID-19 pandemic on domestic wastewater characteristics in Kuwait

    Mohd Elmuntasir Ahmed Affiliation
    ; Adel Al-Haddad Affiliation
    ; Ali Bualbanat Affiliation

Abstract

The wastewater quality alterations due to the use of cleaning agents, sanitisers, and disinfectants, in addition to the accompanying use of water during COVID-19 have potential impacts on wastewater treatment operations. How the characteristics of wastewater could be altered by the COVID-19 pandemic was the concern of this investigation. Daily records of the Ardiya catchment in Kuwait City were examined for the period 2015–2020. Perhaps due to the excessive use of water during 2020 (446 compared to the five-year average of 436 l/c.d) and the corresponding wastewater generation increase (253 compared to the five-year average of 239 l/c.d), the effect of chemical usage on the wastewater quality has dampened. Nonetheless, an increase in the frequency of COD/BOD ratio > 3, TP in the range 6.5 to 8.5, TKN in the range 40 to 50 were observed in 2020, which was not observed during 2015–2019. These COVID-19 related alterations are important to take into consideration in wastewater treatment operations to achieve wastewater treatment targets.

Keyword : wastewater, characterisation, flowrate, COVID-19, pandemic, pollution

How to Cite
Ahmed, M. E., Al-Haddad, A., & Bualbanat, A. (2022). Possible impacts of COVID-19 pandemic on domestic wastewater characteristics in Kuwait. Journal of Environmental Engineering and Landscape Management, 30(3), 393–411. https://doi.org/10.3846/jeelm.2022.17634
Published in Issue
Oct 7, 2022
Abstract Views
480
PDF Downloads
345
SM Downloads
179
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ahmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., O’Brien, J. W., Choi, P. M., Kitajima, M., Simpson, S. L., Li, J., Tscharke, B., Verhagen, R., Smith, W., Zaugg, J., Dierens, L., Hugenholtz, P., Thomas, K. V., & Mueller, J. F. (2020). First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Science of the Total Environment, 728, 138764. https://doi.org/10.1016/j.scitotenv.2020.138764

Alygizakis, I., Galani, A., Rousis, N., Aalizadeh, R., Dimopoulos, M., & Thomaidis, N. (2021). Change in the chemical content of untreated wastewater of Athens, Greece under COVID-19 pandemic. Science of the Total Environment, 799, 149230. https://doi.org/10.1016/j.scitotenv.2021.149230

American Public Health Association. (2014). Standard methods for examination of water and wastewater. Washington, DC, USA.

American Water Works Association. (2020). Utility actions to sustain operations during COVID-19. https://www.awwa.org/Portals/0/AWWA/Education/Webinars/2020PDFs/W200320_COVID-19_Handouts.pdf

Anayah, F., Al-Khatib, I. A., & Hejaz, B. (2021). Assessment of water and sanitation systems at Palestinian healthcare facilities: Pre-and post-COVID-19. Environment Monitoring and Assessment, 193, 41. https://doi.org/10.1007/s10661-020-08791-4

Aydın, S., Nakiyingi, B. A., Esmen, C., Güneysu S., & Ejjada, M. (2020). Environmental impact of coronavirus (COVID-19) from Turkish perceptive. Environment, Development, and Sustainability, 13, 1–8. https://doi.org/10.1007/s10668-020-00933-5

Balboa, S., Mauricio-Iglesias, M., Rodriguez, S., Martínez-Lamas, L., Vasallo, F. J., Regueiro, B., & Lema, J. M. (2020). The fate of SARS-CoV-2 in WWTPs points out the sludge line as a suitable spot for monitoring. medRxiv. https://doi.org/10.1101/2020.05.25.20112706

Blanco, A., Abid, I., Al-Otaibi, N., Perez-Rodriguez, F. J., Fuentes, C., Guix, S., Pinto, R. M., & Bosch, A. (2019). Glass wool concentration optimisation for the detection of enveloped and non-enveloped waterborne viruses. Food and Environmental Virology, 11, 184–192. https://doi.org/10.1007/s12560-019-09378-0

Bernstein, M., & Cottingham, K. (2015). Chlorine use in sewage treatment could promote antibiotic resistance. https://www.acs.org/content/acs/en/pressroom/newsreleases/2015/march/chlorine-use-in-sewage-treatment-could-promote-antibiotic-resistance.html

Bodík, I., Gašpariková, E., Dančová, L., Kalina, A., Hutňan, M., & Drtil, M. (2008). Influence of disinfectants on domestic wastewater treatment plant performance. Bioresource Technology, 99(3), 532–539. https://doi.org/10.1016/j.biortech.2007.01.016

Bogler, A., Packman, A., Furman, A., Gross, A., Kushmaro, A., Ronen, A., Dagot, C., Hill, C., Vaizel-Ohayon, D., Morgenroth, E., Bertuzzo, E., Wells, G., Raanan Kiperwas, H., Horn, H., Negev, I., Zucker, I., Bar-Or, I., Moran-Gilad, J., Balcazar, J. L., … Bar-Zeev, E. (2020). Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nature Sustainability, 3, 981–990. https://doi.org/10.1038/s41893-020-00605-2

Bono, R., Arnau, J., Alarcón, R., & Blanca, M. J. (2020). Bias, precision, and accuracy of skewness and kurtosis estimators for frequently used continuous distributions. Symmetry, 12, 19. https://doi.org/10.3390/sym12010019

Campbell, K., & Wang, J. (2020). New insights into the effect of surfactants on oxygen mass transfer in activated sludge process. Journal of Environmental Chemical Engineering, 8(5), 104409. https://doi.org/10.1016/j.jece.2020.104409

Casanova, L., Rutala, W. A., Weber, D. J., & Sobsey, M. D. (2009). Survival of surrogate coronaviruses in water. Water Research, 43(7), 1893–1898. https://doi.org/10.1016/j.watres.2009.02.002

Chin, A. W. H., Chu, J. T. S., Perera, M. R. A., Hui, K. P. Y., Yen, H., Chan, M. C. W., Peiris, M., & Poon, L. L. M. (2020). Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe, 1(1), e10. https://doi.org/10.1016/S2666-5247(20)30003-3

Choudri, B. S., & Charabi, Y. (2019). Health effects associated with wastewater treatment, reuse, and disposal. Water Environment Research, 87(10), 1817–1848. https://doi.org/10.1002/wer.1157

Chu, W. Fang, C., Deng, Y., & Xu, Z. (2020). Intensified disinfection amid COVID-19 pandemic poses potential risks to water quality and safety. Environmental Science and Technology, 55(7), 4084–4086. https://doi.org/10.1021/acs.est.0c04394

Colella, M., Ripa, M., Cocozza, A., Panfilo, C., & Ulgiati, S. (2021). Challenges and opportunities for more efficient water use and circular wastewater management. The case of Campania Region, Italy. Journal of Environmental Management, 297, 113171. https://doi.org/10.1016/j.jenvman.2021.113171

Curtis, K., Keeling, D., Yetka, K., Larson, A., & Gonzalez, R. (2020). Wastewater SARS-CoV-2 concentration and loading variability from grab and 24-hour composite samples. medRxiv. https://doi.org/10.1101/2020.07.10.20150607

Elsaid, K., Olabi, V., Sayed, E., Wilberforce, T., & Abdelkareem, M. (2021). Effects of COVID-19 on the environment: An overview on air, water, wastewater, and solid waste. Journal of Environmental Management, 292, 112694. https://doi.org/10.1016/j.jenvman.2021.112694

Emmanuel, E., Keck, G., Blanchard, J. M., Vermande, P., & Perrodin, Y. (2004). Toxicological effects of disinfection using sodium hypochlorite on aquatic 278 organisms and its contribution to AOX formation in hospital wastewater. Environment International, 30, 891–900. https://doi.org/10.1016/j.envint.2004.02.004

Environmental Services and Regulation. (2015). Clinical and related waste (ESR/2015/1571, Version 4.01). Department of Environment and Science, The Queensland Government, Brisbane, Australia. https://environment.des.qld.gov.au/__data/assets/pdf_file/0029/89147/pr-gl-clinical-and-related-waste.pdf

Follmann, H., Souza, E., Battistelli, A., Lapolli, F., & Lobo-Recio, M. (2020). Determination of the optimal electrocoagulation operational conditions for pollutant removal and filterability improvement during the treatment of municipal wastewater. Journal of Water Process Engineering, 36, 101295. https://doi.org/10.1016/j.jwpe.2020.101295

Fukuzaki, S. (2006). Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Science, 11(4), 147–157. https://doi.org/10.4265/bio.11.147

García-Ávila, F., Valdiviezo-Gonzales, L., Cadme-Galabay, M., Gutiérrez-Ortega, H., Altamirano-Cárdenas, L., Zhindón-Arévalo, C., & del Pino, L. (2020). Considerations on water quality and the use of chlorine in times of SARS-CoV-2 (COVID-19) pandemic in the community. Case Studies in Chemical and Environmental Engineering, 2, 100049. https://doi.org/10.1016/j.cscee.2020.100049

Geller, C., Varbanov, M., & Duval, R. E. (2012). Human coronaviruses: Insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses, 4, 3044–3068. https://doi.org/10.3390/v4113044

Gundy, P. M., Gerba, C. P., & Pepper, I. L. (2009). Survival of coronaviruses in water and wastewater. Food Environmental Virology, 1, 10–14. https://doi.org/10.1007/s12560-008-9001-6

Hamed, M. A., Moustafa, M. E., Soliman, Y. A., El-Sawy, M. A., & Khedr, A. I. (2017). Trihalomethanes formation in marine environment in front of Nuweibaa desalination plant as a result of effluents loaded by chlorine residual. Egyptian Journal of Aquatic Research, 43, 45–54. https://doi.org/10.1016/j.ejar.2017.01.001

Haramoto, E., Malla, B., Thakali, O., & Kitajima, M. (2020). First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Science of the Total Environment, 737, 140405. https://doi.org/10.1016/j.scitotenv.2020.140405

Hellmer, M., Paxeus, N., Magnius, L., Enache, L., Arnholm, B., Johansson, A., Bergstrom T., & Norder, H. (2020). Detection of pathogenic viruses in sewage provided early warnings of hepatitis A virus and norovirus outbreaks. Applied Environmental Microbiology, 80(21), 6771–6781. https://doi.org/10.1128/AEM.01981-14

Hora, P. I., Pati, S. G., McNamara, P. J., & Arnold, W. A. (2020). Increased use of quaternary ammonium compounds during the SARS-CoV-2 pandemic and beyond: Consideration of environmental implications. Environmental Science and Technology Letters, 7(9), 622–631. https://doi.org/10.1021/acs.estlett.0c00437

Jammalamadaka, S. R., Taufer, E., & Terdik, G. H. (2021). On multivariate skewness and kurtosis. Sankhya A, 83, 607–644. https://doi.org/10.1007/s13171-020-00211-6

Kataki, S., Chatterjee, S., Vairale, M. G., Sharma, S., & Dwivedi, S. K. (2021). Concerns and strategies for wastewater treatment during COVID-19 pandemic to stop plausible transmission. Resources Conservation and Recycling, 164, 105156. https://doi.org/10.1016/j.resconrec.2020.105156

Kitajima, M., Ahmed, W., Bibby, K., Carducci, A., Gerba, C. P., Hamilton, K. A., Haramoto, E., & Rose, J. B. (2020). SARS-CoV-2 in wastewater: State of the knowledge and research needs. Science of the Total Environment, 15(739), 139076. https://doi.org/10.1016/j.scitotenv.2020.139076

Kocamemi, B. A., Kurt, H., Sait, A., Sarac, F., Saatci, A. M., & Pak­demirli, B. (2020). SARS-CoV-2 detection in Istanbul wastewater treatment plant sludges. medRxiv. https://doi.org/10.1101/2020.05.12.20099358

Kumar, M., Taki, K., Gahlot, R., Sharma, A., & Dhangar, K. (2020). A chronicle of SARS-CoV-2: Part-I-Epidemiology, diagnosis, prognosis, transmission and treatment. Science of the Total Environment, 10(734), 139278. https://doi.org/10.1016/j.scitotenv.2020.139278

Lai, M. Y. Y., Cheng, P. K. C., & Lim, W. W. L. (2005). Survival of severe acute respiratory syndrome coronavirus. Clinical and Infectious Disease, 41, 67–71. https://doi.org/10.1086/433186

Lechuga, M., Fernández-Serrano, M., Jurado, E., Núñez-Olea, J., & Ríos, F. (2016). Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotoxicology and Environmental Safety, 125, 1–8. https://doi.org/10.1016/j.ecoenv.2015.11.027

Liu, Y., Gayle, A. A., Wilder-Smith, A., & Rocklöv, J. (2020). The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of Travel Medicine, 27(2), taaa021. https://doi.org/10.1093/jtm/taaa021

Lodder, W., & de Roda Husman, A. M. (2020). SARS-CoV-2 in wastewater: Potential health risk, but also data source. The Lancet Gastroenterology Hepatology, 5(6), 533–534. https://doi.org/10.1016/S2468-1253(20)30087-X

Long, C., Xu, H., Shen, Q., Zhang, X., Fan, B., Wang, C., & Li, H. (2020). Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? European Journal of Radiology, 126, 108961. https://doi.org/10.1016/j.ejrad.2020.108961

Mallapaty, S. (2020). How sewage could reveal the true scale of coronavirus outbreak. Nature, 580(7802), 176–177. https://doi.org/10.1038/d41586-020-00973-x

Medema, G., Heijnen, L., Elsinga, G. Italiaander, R., & Brouwer A. (2020). Presence of SARS-Coronavirus-2 in sewage. Environmental Science and Technology Letters. https://doi.org/10.1101/2020.03.29.20045880

Metcalf & Eddy. (2014). Wastewater engineering, treatment, and resource recovery (3rd ed.). McGraw-Hill Publishers.

Ministry of Electricity and Water. (2021). Annual statistics book. https://www.mew.gov.kw/en/about/statistics

Mousazadeh, M., Paital, B., Naghdali, Z., Mortezania, Z., Hashemi, M., Karamati Niaragh, E., Aghababaei, M., Ghorbankhani, M., Lichtfouse, E., Sillanpää, M., Hashim, K. S., & Emamjomeh, M. M. (2021). Positive environmental effects of the coronavirus 2020 episode: A review. Environment, Development and Sustainability, 4, 1–23. https://doi.org/10.1007/s10668-021-01240-3

Naddeo, V., & Liu, H. (2020). Editorial Perspectives: 2019 novel coronavirus (SARS-CoV-2): What is its fate in urban water cycle and how can the water research community respond? Environmental Science: Water Research and Technology, 6, 1213–1216. https://doi.org/10.1039/D0EW90015J

Nemudryi, A., Nemudraia, A., Wiegand, T., Surya, K., Buyukyoruk, M., Cicha, C., Vanderwood, K., Wilkinson, R., & Wiedenheft, B. (2020). Temporal detection and phylogenetic assessment of SARS-CoV-2 in municipal wastewater. Cell Reports Medicine, 1(6), 100098. https://doi.org/10.1016/j.xcrm.2020.100098

Paleologos, E. K., O’Kelly, B. C., Tang, C. S., Cornell, K., Rodríguez-Chueca, J., Abuel-Naga, H., Koda, E., Farid, A., Vaverková, M., Kostarelos, K., Goli, V., Guerra-Rodríguez, S., Leong, E., Jayanthi, P., Shashank, B., Sharma, S., Shreedhar, S., Mohammad, A., Jha, B., … Singh, D. N. (2021). Post Covid-19 water and wastewater management to protect public health and geoenvironment. Environmental Geotechnics, 8(3), 193–207. https://doi.org/10.1680/jenge.20.00067

Pattusamy, V., Nandini, N., & Bheemappa, K. (2013). Detergent and sewage phosphates 337 entering into lake ecosystem and its impact on aquatic environment. International Journal of Advanced Research, 1(3), 129–133.

Peccia, J., Zulli, A., Brackney, D. E., Grubaugh, N. D., Kap­lan, E. H., Casanovas-Massana, A., Ko, A. I., Malik, A. A., Wang, D., Wang, M., Warren, J. L., Weinberger, D. M., Arnold, W., & Omer, S. B. (2020). Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nature Biotechnology, 38, 1164–1167. https://doi.org/10.1038/s41587-020-0684-z

Pinon, A., & Vialette, M. (2018). Survival of viruses in water. Intervirology, 61(5), 214–222. https://doi.org/10.1159/000484899

Pirsaheb, M., Fazlzadehdavil, M., Hazrati, S., Sharafi, K., Khodadadi, T., & Safari, Y. (2014). A survey on nitrogen and phosphorus compound variation processes in wastewater stabilisation ponds. Polish Journal of Environmental Studies, 23(3), 831–834.

Public Authority for Civil Information. (2021). Statistic service system. https://www.paci.gov.kw/stat/

Quilliam, R. S., Weidmann, M., Moresco, V., Purshouse, H., O’Hara, Z., & Oliver, D. M. (2020). COVID-19: The environmental implications of shedding SARS-CoV-2 in human faeces. Environment International, 140, 105790. https://doi.org/10.1016/j.envint.2020.105790

Randazzo, W., Truchado, P., Cuevas-Ferrando, E., Simón, P., Allende, A., & Sánchez, G. (2020). SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Research, 181, 115942. https://doi.org/10.1016/j.watres.2020.115942

Raptopoulou, C., Palasantza, P. A., Mitrakas, M., Kalaitzidou, K., Tolkou A., & Zouboulis, A. (2016). Statistical variation of nutrient concentrations and biological removal efficiency of a wastewater treatment plant. Water Utility Journal, 14, 5–17.

Rohila, S. K. (2020). COVID-19 outbreak: More hand washing can increase India’s water woes. https://www.downtoearth.org.in/blog/water/covid-19-outbreakmore-hand-washing-can-increase-india-s-water-woes-69900

Rutala, W., & Weber, D. (1997). Uses of inorganic hypochlorite (bleach) in health-care facilities. Clinical Microbiology Reviews, 10(4), 597–610.

Santarpia, J. L., Rivera, D. N., Herrera, V., Morwitzer, M. J., Creager, H., Santarpia, G. W., Crown, K. K., Brett-Major, D. M., Schnaubelt, E., Broadhurst, M. J., Lawler, J. V., Reid, St. P., & Love, J. J. (2020). Transmission potential of SARS-CoV-2 in viral shedding observed at the University of Nebraska Medical Center. Scientific Reports. https://doi.org/10.1101/2020.03.23.20039446

Singh, S., Sharma, P., & Balhara, Y. P. S. (2021). The impact of nationwide alcohol ban during the COVID-19 lockdown on alcohol use-related internet searches and behaviour in India: An infodemiology study. Drug and Alcohol Review, 40(2), 196–200. https://doi.org/10.1111/dar.13187

Teymoorian, T., Teymourian, T., Kowsari, E., & Ramakrishna, S. (2021). Direct and indirect effects of SARS-CoV-2 on wastewater treatment. Journal of Water Process Engineering, 42, 102193. https://doi.org/10.1016/j.jwpe.2021.102193

Thomas, H. A. (1954). Effects of detergents on sewage and sewage treatment at military installations. Sewage and Industrial Wastes, 26(8), 954–960.

Trevors, K. E. (1993). Microbiological aspects of septic systems [Conference presentation]. Proceedings of Problem Environments for Septic Systems and Communal Treatment Options Conference, Waterloo Centre for Groundwater Research, University of Waterloo.

Usman, M., Farooq, M., & Hanna, K. (2020). Existence of SARS-CoV-2 in wastewater: Implications for its environmental transmission in developing communities. Environmental Science and Technology, 54, 7758–7759. https://doi.org/10.1021/acs.est.0c02777

Wang, X. W., Li, J. S., Jin, M., Zhen, B., Kong, Q. X., Song, N., Xiao, W. J., Yin, J., Wei, W., Wang, G. J., & Si, B. Y. (2005). Study on the resistance of severe acute respiratory syndrome-associated coronavirus. Journal of Virological Methods, 126(1–2), 171–177. https://doi.org/10.1016/j.jviromet.2005.02.005

Wu, F., Zhao, S., Yu, B., Chen, Y., Wang, W., Song, Z., Hu, Y., Tao, Z., Tian, J., Pei, Y., Yuan, M., Zhang, Y., Dai, F., Liu, Y., Wang, Q., Zheng, J., Xu, L., Holmes, E., & Zhang, Y. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579, 265–269. https://doi.org/10.1038/s41586-020-2008-3

Wurtzer, S., Marechal, V., Mouchel, J. M., Maday, J., Teyssou, R., Richard, E., Almayrac, J. L., & Moulin, L. (2020). Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewaters. medRxiv. https://doi.org/10.1101/2020.04.12.20062679

Xu, Y. (2020). Unveiling the origin and transmission of 2019-nCoV. Trends in Microbiology, 28, 239–240. https://doi.org/10.1016/j.tim.2020.02.001

Yazdian, H., & Jamshidi, S. (2021). Performance evaluation of wastewater treatment plants under the sewage variations imposed by COVID-19 spread prevention actions. Journal of Environmental Health Science and Engineering, 19(2), 1–9. https://doi.org/10.1007/s40201-021-00717-7

Ye, Y., Ellenberg, R. M., Graham, K. E., & Wigginton, K. R. (2016). Survivability, partitioning, and recovery of enveloped viruses in untreated municipal wastewater. Environmental Science and Technology, 50, 5077–5085. https://doi.org/10.1021/acs.est.6b00876

Young, J. C. (2001). Impact of cleaning and disinfecting agents on biological treatment processes. Proceedings of the Water Environment Federation Industrial Wastes (IW) Conference, (3), 201–218. https://doi.org/10.2175/193864701785019533

Zhang, J., Litvinova, M., Liang, Y. Wang, Y., Wang, W., Zhao, S., Wu, Q., Merler, S., Viboud, C., Vespignani, A., Ajelli, M., & Yu, H. (2020a). Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science, 368(6498), 1481–1486. https://doi.org/10.1126/science.abb8001

Zhang, Y., Cao, C., Shuangli, Z., Shu, C., Wang, D., Song, J., Song, Y., Zhen, W., Feng, Z., Wu, G., Xu, J., & Xu, W. (2020b). Isolation of 2019-nCoV from a stool specimen of a laboratory-confirmed case of the coronavirus disease 2019 (COVID-19). China CDC Weekly, 2, 123–124. https://doi.org/10.46234/ccdcw2020.033