Share:


Clinoptilolite- and glauconite-based sorbents for lead removal from natural waters

    Kateryna Stepova Affiliation
    ; Roman Konanets Affiliation

Abstract

The aim of the research is to determine the effect of heat treatment and microwave irradiation on the sorption properties of a natural clinoptilolite and glauconite to Pb2+ ions. To improve the sorption capacity the samples were heat treated at 550 °C for 3 hours or microwaved at 790 W for 30 minutes. The XRD and XRF analysis present the content of investigated samples and prove the increase in the sorption capacity after treatment. After contact with Pb, its content in the natural clinoptilolite increased to 2.66%, and in the thermally treated – to 6.035%. The PbO content in natural glauconite increased to 3.9%, but after microwaving it reached 5.2% of the total sample weight. Heat treatment is useful for improving the sorption capacity of clinoptilolite, and microwave irradiation can significantly increase the adsorption capacity of glauconite.

Keyword : wastewater, water pollution, water cleaning technologies, lead, adsorption, isotherm fitting, adsorption kinetics

How to Cite
Stepova, K., & Konanets, R. (2024). Clinoptilolite- and glauconite-based sorbents for lead removal from natural waters. Journal of Environmental Engineering and Landscape Management, 32(3), 191–200. https://doi.org/10.3846/jeelm.2024.21831
Published in Issue
Aug 13, 2024
Abstract Views
194
PDF Downloads
156
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Al-Maliky, E. A., Gzar, H. A., & Al-Azawy, M. G. (2021). Determination of Point of Zero Charge (PZC) of concrete particles adsorbents. IOP Conference Series: Materials Science and Engineering, 1184, Article 012004. https://doi.org/10.1088/1757-899X/1184/1/012004

Barker, A. J., Clausen, J. L., Douglas, T. A., Bednar, A. J., Griggs, C. S., & Martin, W. A. (2021). Environmental impact of metals resulting from military training activities: A review. Chemosphere, 265, Article 129110. https://doi.org/10.1016/j.chemosphere.2020.129110

Bish, D. L., & Boak, J. M. (2001). Clinoptilolite-Heulandite nomenclature. Reviews in Mineralogy and Geochemistry, 45(1), 207–216. https://doi.org/10.2138/rmg.2001.45.5

Bosak, P., & Stokalyuk, O. (2022). Modeling distribution of pollutants originating from coal waste dumps of the Novovolynsk mining area in the environment. Bulletin of Lviv State University of Life Safety, 26, 5–13. https://doi.org/10.32447/20784643.26.2022.01

Bosak, P., Popovych, V., Stepova, K., & Dudyn, R. (2020). Environmental impact and toxicological properties of mine dumps of the Lviv-Volyn coal basin. News of the Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences, 2(440), 48–58. https://doi.org/10.32014/2020.2518-170X.30

Cincotti, A., Lai, N., Orrù, R., & Cao, G. (2001) Sardinian natural clinoptilolites for heavy metals and ammonium removal: Experimental and modeling. Chemical Engineering Journal, 84(3), 275–282. https://doi.org/10.1016/S1385-8947(00)00286-2

Eloussaief, M., & Benzina, M. (2010). Efficiency of natural and acid-activated clays in the removal of Pb(II) from aqueous solutions. Journal of Hazardous Materials, 178(1–3), 753–757. https://doi.org/10.1016/j.jhazmat.2010.02.004

Franus, M., & Bandura, L. (2014). Sorption of heavy metal ions from aqueous solution by glauconite. Fresenius Environmental Bulletin, 23(3), 825–839.

Franus, M., Bandura, L., & Madej, J. (2019). Mono and poly-cationic adsorption of heavy metals using natural glauconite. Minerals, 9(8), Article 470. https://doi.org/10.3390/min9080470

Gillies, J. A., Kuhns, H., Engelbrecht, J. P., Uppapalli, S., Etyemezian, V., & Nikolich, G. (2007). Particulate emissions from U.S. Department of Defense artillery backblast testing. Journal of the Air & Waste Management Association, 57(5), 551–560. https://doi.org/10.3155/1047-3289.57.5.551

Gomase, V., Jugade, R., Doondani, P., Saravanan, D., & Pandey, S. (2022). Sequential modifications of chitosan biopolymer for enhanced confiscation of Cr(VI). Inorganic Chemistry Communications, 145, Article 110009. https://doi.org/10.1016/j.inoche.2022.110009

Heiderscheidt, D. (2018). The impact of world war one on the forests and soils of Europe. Ursidae: The Undergraduate Research Journal at the University of Northern Colorado, 7(3), 1–16.

Hernández-Montoya, V., Pérez-Cruz, M. A., Mendoza-Castillo, D. I., Moreno-Virgen, M. R., & Bonilla-Petriciolet, A. (2013). Competitive adsorption of dyes and heavy metals on zeolitic structures. Journal of Environmental Management, 116, 213–221. https://doi.org/10.1016/j.jenvman.2012.12.010

Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

Hu, Q., Lan, R., He, L., Liu, H., & Pei, X. (2023). A critical review of adsorption isotherm models for aqueous contaminants: Curve characteristics, site energy distribution and common controversies. Journal of Environmental Management, 329, Article 117104. https://doi.org/10.1016/j.jenvman.2022.117104

Inglezakis, V. J., Loizidou, M. D., & Grigoropoulou, H. P. (2002). Equilibrium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural clinoptilolite. Water Research, 36(11), 2784–2792. https://doi.org/10.1016/S0043-1354(01)00504-8

Khaled, A. S., Rasha, S. E.-T., & Merit, R. (2018). Utilization of surface modified phyllosilicate mineral for heavy metals removal from aqueous solutions. Egyptian Journal of Petroleum, 27(3), 393–401. https://doi.org/10.1016/j.ejpe.2017.07.003

Kim, S., Son, N., Park, S.-M., Lee, C.-T., Pandey, S., & Kang, M. (2023). Facile fabrication of oxygen-defective ZnO nanoplates for enhanced photocatalytic degradation of methylene blue and in vitro antibacterial activity. Catalysts, 13(3), Article 567. https://doi.org/10.3390/catal13030567

Kumar, N., Gusain, R., Pandey, S., & Ray, S. S. (2023). Hydrogel nanocomposite adsorbents and photocatalysts for sustainable water purification. Advanced Materials Interfaces, 10(2), Article 2201375. https://doi.org/10.1002/admi.202201375

Lagergren, S. (1898). About the Theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1–39.

Li, Ch., Wang, Z., Liu, Y., Li, A., Li, Y., Ren, R., Song, Z., Wang, Y., Qi, F., Xu, B., Guan, X., Ikhlaq, A., & Ismailova, O. (2024). Effective control of DBPs formation and membrane fouling in catalytic ozonation membrane reactor for municipal wastewater reclamation. Separation and Purification Technology, 330(Part C), Article 125492. https://doi.org/10.1016/j.seppur.2023.125492

Liu, Y., Zhao, S., Qiu, X., Meng, Y., Wang, H., Zhou, S., Qiao, Q., & Yan, C. (2023). Clinoptilolite based zeolite-geopolymer hybrid foams: Potential application as low-cost sorbents for heavy metals. Journal of Environmental Management, 330, Article 117167. https://doi.org/10.1016/j.jenvman.2022.117167

Martemianov, D., Plotnikov, E., Rudmin, M., Tyabayev, A., Artamo­nov, A., & Kundu, P. (2020). Studying glauconite of the bakchar deposit (Western Siberia) as a prospective sorbent for heavy metals. Journal of Environmental Science and Health, Part A, 55(11), 1359–1365. https://doi.org/10.1080/10934529.2020.1794686

Moossa, B., Qiblawey, H., Nasser, M. S., Al-Ghouti, M. A., & Be­namor, A. (2023). Electronic waste considerations in the Middle East and North African (MENA) region: A review. Environmental Technology & Innovation, 29, Article 102961. https://doi.org/10.1016/j.eti.2022.102961

Okoro, H. K., Alao, S. M., Pandey, S., Jimoh, I., Basheeru, K. A., Caliphs, Z., & Ngila, J. C. (2022). Recent potential application of rice husk as an eco-friendly adsorbent for removal of heavy metals. Applied Water Science, 12, Article 259. https://doi.org/10.1007/s13201-022-01778-1

Omidi, A. H., Cheraghi, M., Lorestani, B., Sobhanardakani, S., & Jafari, A. (2019). Biochar obtained from cinnamon and cannabis as effective adsorbents for removal of lead ions from water. Environmental Science and Pollution Research, 26, 27905–27914. https://doi.org/10.1007/s11356-019-05997-z

Panayotova, M., & Velikov, B. (2002). Kinetics of heavy metal ions removal by use of natural zeolite. Journal of Environmental Science and Health, Part A, 37(2), 139–147. https://doi.org/10.1081/ese-120002578

Pandey, S., Fosso-Kankeu, E., Spiro, M. J., Waanders, F., Kumar, N., Ray, S. S., Kim, J., & Kang, M. (2020). Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite. Materials Today Chemistry, 18, Article 100376. https://doi.org/10.1016/j.mtchem.2020.100376

Pandey, S., Kim, S., Kim, Y. S., Kumar, D., & Kang, M. (2024). Fabrication of next-generation multifunctional LBG-s-AgNPs@ g-C3N4 NS hybrid nanostructures for environmental applications. Environmental Research, 240(Part 1), Article 117540. https://doi.org/10.1016/j.envres.2023.117540

Pandey, S., Makhado, E., Kim, S., & Kang, M. (2023). Recent developments of polysaccharide based superabsorbent nanocomposite for organic dye contamination removal from wastewater — A review. Environmental Research, 217, Article 114909. https://doi.org/10.1016/j.envres.2022.114909

Paukštys, B., Fonnum, F., Zeeb, B. A., & Reimer, K. J. (1998). Environmental contamination and remediation practices at former and present military bases. Springer. https://doi.org/10.1007/978-94-011-5304-1

Perić, J., Trgo, M., & Vukojević Medvidović, N. (2004). Removal of zinc, copper and lead by natural zeolite–a comparison of adsorption isotherms. Water Research, 38(7), 1893–1899. https://doi.org/10.1016/j.watres.2003.12.035

Sabadash, V., Gumnitsky, Y., Mylyanyk, A., & Romaniuk, L. (2017). Simultaneous sorption of copper and chromium cations to wastewater treatment. Scientific Bulletin of UNFU, 27(1), 129–132. https://doi.org/10.15421/40270129

Saruchi, Kumar, V., Bhatt, D., Pandey, S., & Ghfar, A. A. (2023). Synthesis and characterization of silver nanoparticle embedded cellulose–gelatin based hybrid hydrogel and its utilization in dye degradation. RSC Advances, 13, 8409–8419. https://doi.org/10.1039/D2RA03885D

Sobhanardakani, S., Ahmadi, M., & Zandipak, R. (2016). Efficient removal of Cu(II) and Pb(II) heavy metal ions from water samples using 2,4-dinitrophenylhydrazine loaded sodium dodecyl sulfate-coated magnetite nanoparticles. Journal of Water Supply: Research and Technology-Aqua, 65(4), 361–372. https://doi.org/10.2166/aqua.2016.100

Sobhanardakani, S., Tayebi, L., & Hosseini, S. V. (2018). Health risk assessment of arsenic and heavy metals (Cd, Cu, Co, Pb, and Sn) through consumption of caviar of Acipenser persicus from Southern Caspian Sea. Environmental Science and Pollution Research, 25, 2664–2671. https://doi.org/10.1007/s11356-017-0705-8

Sprynskyy, M., Buszewski, B., Terzyk, A. P., & Namieśnik, J. (2006). Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science, 304(1), 21–28. https://doi.org/10.1016/j.jcis.2006.07.068

Stylianou, M. A., Hadjiconstantinou, M. P., Inglezakis, V. J., Moustakas, K. G., & Loizidou, M. D. (2007). Use of natural clinoptilolite for the removal of lead, copper and zinc in fixed bed column. Journal of Hazardous Materials, 143(1–2), 575–581. https://doi.org/10.1016/j.jhazmat.2006.09.096

Talebzadeh, F., Zandipak, R., & Sobhanardakani, S. (2016). CeO2 nanoparticles supported on CuFe2O4 nanofibers as novel adsorbent for removal of Pb(II), Ni(II), and V(V) ions from petrochemical wastewater. Desalination and Water Treatment, 57(58), 28363–28377. https://doi.org/10.1080/19443994.2016.1188733

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117

Topare, N. S., & Wadgaonkar, V. S. (2023). A review on application of low-cost adsorbents for heavy metals removal from wastewater. Materials Today: Proceedings, 77, 8–18. https://doi.org/10.1016/j.matpr.2022.08.450

Ward, R. L., & McKague, H. L. (1994). Clinoptilolite and heulandite structural differences as revealed by multinuclear magnetic resonance spectroscopy. Journal of Physical Chemistry, 98, 1232–1237. https://doi.org/10.1021/j100055a031

Weber, A. K., Bannon, D. I., Abraham, J. H., Seymour, R. B., Passman, P. H., Lilley, P. H., Parks, K. K., Braybrooke, G., Cook, N. D. & Belden, A. L. (2020). Reduction in lead exposures with lead-free ammunition in an advanced urban assault course. Journal of Occupational and Environmental Hygiene, 17(11–12), 598–610. https://doi.org/10.1080/15459624.2020.1836375

Yanovska, E., Zatovskyi, I., & Slobodyanyk, M. (2008). Scientific fundamentals of a non-waste technology for post-treatment of industrial wastewater from mixtures of heavy metal ions. Environment Ecology and Safety of Life Activity, 5, 50–54.

Zanin, E., Scapinello, J., de Oliveira, M., Rambo, C. L., Franscescon, F., Freitas, L., de Mello, J. M., Fiori, M. A., Oliveira, J. V., & Dal Magro, J. (2017). Removal of heavy metals from wastewater by adsorption. Process Safety and Environmental Protection, 105, 194–200. https://doi.org/10.5772/intechopen.95841

Zhu, W., Liu, J., & Li, M. (2014). Fundamental studies of novel zwitterionic hybrid membranes: Kinetic model and mechanism insights into strontium removal. The Scientific World Journal, 2014(1), Article 485820. https://doi.org/10.1155/2014/485820