Share:


An analysis of wildfire risk and historical occurrence for a mediterranean biosphere reserve, Central Chile

    Camila Bańales-Seguel Affiliation
    ; Francisco De La Barrera Affiliation
    ; Alejandro Salazar Affiliation

Abstract

Wildfires are one of the main processes that currently shape Mediterranean ecosystems. The analysis of wildfire risk combined with historical records allows for a greater understanding of trends and their relation to territorial variables that are favourable to future events. Using GIS analysis, we assess wildfire risk in La Campana – Peñuelas Biosphere Reserve, in Central Chile. Additionally, with official historical records and LANDSAT satellite images from 1985–2015 and GIS we determine historical occurrence in the Reserve. We found that the areas with very high risk of wildfire occurrence have a strong combination of ignition factors such as presence of human settlements and road connectivity, and variables that would be negatively impacted by the occurrence of wildfires, such as degraded soils and vulnerable vegetation. These findings highlight the need to destine resources to fire prevention in these areas and develop adaptation strategies for risk management at different scales.

Keyword : risk modelling, GIS, La Campana, Santiago, Valparaiso, biodiversity, periurbanization

How to Cite
Bańales-Seguel, C., De La Barrera, F., & Salazar, A. (2018). An analysis of wildfire risk and historical occurrence for a mediterranean biosphere reserve, Central Chile. Journal of Environmental Engineering and Landscape Management, 26(2), 128-140. https://doi.org/10.3846/16486897.2017.1374280
Published in Issue
Jun 26, 2018
Abstract Views
1629
PDF Downloads
858
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ager, A., Preisler, H., Arca, B., Spano, D., & Salis, M. (2014). Wildfire risk estimation in the mediterranean area. Environmetrics, 25(6), 384-396. https://doi.org/10.1002/env.2269

Alloza, J., Baeza, M., De la Riva, J., Duguy, B., Echeverría, M., Ibarra, P., Llovet, J., Pérez-Cabello, F., Rovira, P., Vallejo, V. (2006). A model to evaluate the ecological vulnerability to forest fires in mediterranean ecosystems. Forest Ecology and Management, 234(Supplement), S203. https://doi.org/10.1016/j.foreco.2006.08.322

Altamirano, A., Salas, C., Yaitul, V., Smith-Ramirez, C., & Ávila, A. (2013). Influencia de la heterogeneidad del paisaje en la ocurrencia de incendios forestales en Chile Central. Revista de Geografía Norte Grande, 170(55), 157-170. https://doi.org/10.4067/S0718-34022013000200011

Arca, B., Duce, P., Laconi, M., Pellizzaro, G., Salis, M., & Spano, D. (2007). Evaluation of FARSITE simulator in Mediterranean maquis. International Journal Wildland Fire, 16(5), 563-572. https://doi.org/10.1071/WF06070

Aretano, R., Semeraro, T., Petrosillo, I., De Marco, A., Pasimeni, M. R., & Zurlini, G. (2015). Mapping ecological vulnerability to fire for effective conservation management of natural protected areas. Ecological Modelling, 295, 163-175. https://doi.org/10.1016/j.ecolmodel.2014.09.017

Bajocco, S., & Ricotta, C. (2008). Evidence of selective burning in Sardinia (Italy): which land-cover classes do wildfires prefer?. Landscape Ecology, 23(2), 241-248. https://doi.org/10.1007/s10980-007-9176-5

Bhandary, U., & Muller, B. (2009). Land use planning and wildfire risk mitigation: an analysis of wildfire-burned subdivisions using high-resolution remote sensing imagery and GIS data. Journal of Environmental Planning and Management, 52(7), 939-955. https://doi.org/10.1080/09640560903181147

Biblioteca del Congreso Nacional (BCN). (2010). Ley 19.300 Sobre Bases Generales del Medio Ambiente. Ministerio Secretaría General de la Presidencia.

Biblioteca del Congreso Nacional (BCN). (2013). Ley 17.288 Legisla Sobre Monumentos Nacionales. Ministerio de Educación.

Biblioteca del Congreso Nacional (BCN). (2014a). Decreto Supremo 29/2014 Aprueba Reglamento para la Clasificación de Especies Silvestres según Estado de Conservación. Ministerio del Medio Ambiente.

Biblioteca del Congreso Nacional (BCN). (2014b). Decreto Supremo 52/2014 Aprueba y oficializa clasificación de especies según su estado de conservación, décimo proceso. Ministerio del Medio Ambiente.

Biblioteca del Congreso Nacional (BCN). (2014c). Ley 18.362 Crea Sistema Nacional de Áreas Silvestres Protegidas del Estado. Ministerio de Agricultura.

Borsdorf, A., & Rosas, P. A. (2014). El modelo de Reservas de la Biosfera: conceptos, características e importancia. In Reservas de la Biosfera de Chile – Laboratorio para la Sustentabilidad (pp. 4-20).

Carmona, A., González, M. E., Nahuelhual, L., & Silva, J. (2012). Spatio-temporal effects of human drivers on fire danger in mediterranean Chile. Bosque, 33(3), 31-32. https://doi.org/10.4067/S0717-92002012000300016

Castillo, M., Molina, J., Rodríguez y Silva, F., & Alvear, G. (2013). A territorial fire vulnerability model for Mediterranean ecosystems in South America. Ecological Informatics, 13, 106-113. https://doi.org/10.1016/j.ecoinf.2012.06.004

Castillo, M., Quintanilla, V., & Julio, G. (2009). Análisis del riesgo y vulnerabilidad contra incendios forestales en áreas de interfaz, provincia de Valparaíso. Territorium, 16, 131-138.

Centro de Información de Recursos Naturales (CIREN). (2010a). Determinación de la erosión actual y potencial de los suelos de Chile. Región de Valparaíso. Ministerio de Agricultura.

Centro de Información de Recursos Naturales (CIREN). (2010b). Determinación de la erosión actual y potencial de los suelos de Chile. Región Metropolitana. Ministerio de Agricultura.

Chuvieco, E., & Kasischke, E. S. (2007). Remote sensing information for fire management and fire effects assessment. Journal of Geophysical Research, 112(G1), 1-8. https://doi.org/10.1029/2006JG000230

Chuvieco, E., Cocero, D., Riaño, D., Martin, P., Martínez, J., De La Riva, J., & Pérez, F. (2004). Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sensing of Environment, 92(3), 322-331. https://doi.org/10.1016/j.rse.2004.01.019

Comisión Nacional del Medio Ambiente (CONAMA). (2005). Plan de Acción País para la Implementación de la Estrategia Nacional de Biodiversidad 2004–2015.

Comisión Nacional del Medio Ambiente (CONAMA). (2008). Plan de Acción Integrado de Biodiversidad 2007–2010, 1-43.

Comité Nacional Pro Defensa de la Fauna y Flora (CODEFF). (1999). Las Áreas Silvestres Protegidas Privadas en Chile.

Consejo de Monumenos Nacionales (CMN). (2010). Santuarios de la Naturaleza de Chile. Ó. Acuña, M. S. Silva, L. López, K. Sánchez, E. Bahamondes, R. Otero, & M. C. Grandi (Eds.). Santiago, Chile: Impresora Óptima S.A.

Corporación Nacional Forestal (CONAF). (2015). Ocurrencia y daño por comuna. Santiago, Chile.

Cowling, R. M., Rundel, P. W., Lamont, B. B., Arroyo, M. K., & Arianoutsou, M. (1996). Plant diversity in mediterranean-climate regions. Trends in Ecology and Evolution, 11(9), 362-366. https://doi.org/10.1016/0169-5347(96)10044-6

Darques, R. (2015). Mediterranean cities under fire. A critical approach to the wildland–urban interface. Applied Geography, 59, 10-21. https://doi.org/10.1016/j.apgeog.2015.02.008

Darques, R. (2016). Wildfires at a Pan-Mediterranean scale: Human-environment dynamics through MODIS data. Human Ecology, 44(1), 47-63. https://doi.org/10.1007/s10745-015-9802-9

De Vicente, F. (2012). Diseño de un modelo de riesgo integral de incendios forestales mediante técnicas multicriterio y su automatización en sistemas de información geográfica. Una aplicación en la comunidad Valenciana. Universidad Politécnica de Madrid.

Duguy, B., Alloza, J. A., Baeza, M. J., De La Riva, J., Echeverría, M., Ibarra, P., Llovet, J., Pérez-Cabello, F., Rovira, P., Vallejo, R. V. (2012). Modelling the ecological vulnerability to forest fires in mediterranean ecosystems using geographic information technologies. Environmental Management, 50(6), 1012-1026. https://doi.org/10.1007/s00267-012-9933-3

Escuin, S., Navarro, R., & Fernández, P. (2008). Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing, 29(4), 1053-1073. https://doi.org/10.1080/01431160701281072

Fernández, I., Morales, N., Olivares, L., Salvatierra, J., Gómez, M., & Montenegro, G. (2010). Restauración ecológica para ecosistemas nativos afectados por incendios forestales. Gráfica LOM, Santiago, Chile. 162 p.

Fox, D., Martin, N., Carrega, P., Andrieu, J., Adnès, C., Emsellem, K., Ganga, O., Moebius, F., Tortorollo, N., Fox, E. (2015). Increases in fire risk due to warmer summer temperatures and wildland urban interface changes do not necessarily lead to more fires. Applied Geography, 56, 1-12. https://doi.org/10.1016/j.apgeog.2014.10.001

Frau, C. M., Valenzuela, G. J., Rojas, O. Y., Hernádez, Y. M., & Guajardo, R. M. (2006). Teledetección y SIG en el Ámbito Forestal: Experiencias en Chile. Ambiência, 2, 171-185.

Galiana, L., & Karlsson, O. (2012). Development of a methodology for the assessment of vulnerability related to wildland fires using a multi-criteria evaluation. Geographical Research, 50(3), 304-319. https://doi.org/10.1111/j.1745-5871.2011.00718.x

Giglio, L., Randerson, J. T., Van der Werf, G. R., Kasibhatla, P. S., Collatz, G. J., Morton, D. C., & DeFries, R. S. (2010). Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences, 7(3), 1171-1186. https://doi.org/10.5194/bg-7-1171-2010

Giglio, L., Schroeder, W., & Justice, C. O. (2016). The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 178, 31-41. https://doi.org/10.1016/j.rse.2016.02.054

Gill, A. M., Stephens, S. L., & Cary, G. J. (2013). The worldwide “wildfire” problem. Ecological Applications, 23(2), 438-454. https://doi.org/10.1890/10-2213.1

Herrero, G., Jappiot, M., Bouillon, C., & Long, M. (2012). Application of a geographical assessment method for the characterization of wildland-urban interfaces in the context of wildfire prevention: A case study in western Madrid. Applied Geography, 35(1-2), 60-70. https://doi.org/10.1016/j.apgeog.2012.05.005

Hessburg, P. F., Reynolds, K. M., Keane, R. E., James, K. M., & Salter, R. B. (2007). Evaluating wildland fire danger and prioritizing vegetation and fuels treatments. Forest Ecology and Management, 247(1-3), 1-17. https://doi.org/10.1016/j.foreco.2007.03.068

Huesca, M., Litago, J., Merino-de-Miguel, S., Cicuendez, V., & Palacios, A. (2014). Modeling and forecasting MODIS-based Fire Potential Index on a pixel basis using time series models. International Journal of Applied Earth Observation and Geoinformation, 26, 363-376. https://doi.org/10.1016/j.jag.2013.09.003

Ireland, G., & Petropoulos, G. P. (2015). Exploring the relationships between post-fire vegetation regeneration dynamics, topography and burn severity: A case study from the Montane Cordillera Ecozones of Western Canada. Applied Geography, 56, 232-248. https://doi.org/10.1016/j.apgeog.2014.11.016

Jarašiūnas, G., & Kinderienė, I. (2016). Impact of agro-environmental systems on soil erosion processes and soil properties on hilly landscape in Western Lithuania. Journal of Environmental Engineering and Landscape Management, 24(1), 60-69. https://doi.org/10.3846/16486897.2015.1054289

Julio, G. (1990). Diseño de índices de riesgo de incendios forestales para Chile. Bosque, 11(2), 59-72. https://doi.org/10.4206/bosque.1990.v11n2-06

Lampin-Maillet, C., Long, M., Ganteaume, A., Jappiot, M., & Ferrier, J. (2011). Land cover analysis in wildland-urban interfaces according to wildfire risk: A case study in the South of France. Forest Ecology and Management, 261(12), 2200-2213. https://doi.org/10.1016/j.foreco.2010.11.022

Levin, N., Tessler, N., Smith, A., & McAlpine, C. (2016). The human and physical determinants of wildfires and burnt areas in Israel. Environmental Management, 58(3), 549-562. https://doi.org/10.1007/s00267-016-0715-1

Luebert, F., & Pliscoff, P. (2017). Sinopsis Bioclimática y Vegetacional de Chile. Segunda edición. Editorial Universitaria, Santiago.

Manzo Delgado, L., & López García, J. (2013). Detección de áreas quemadas en el sureste de México, utilizando índices pre y post-incendio NBR y BAI, derivados de compuestos MODIS. Geofocus, Revista Internacional de Ciencia Y Tecnología de La Información Geográfica, (13-2), 66-83.

Ministerio del Medio Ambiente (MMA). (2011). Diseño del Inventario Nacional de Humedales y el Seguimiento Ambiental. Ministerio del Medio Ambiente, Chile. 164 p. Retrieved from http://www.mma.gob.cl/1304/articles-50507_documento.pdf

Ministerio del Medio Ambiente (MMA). (2013). Acta Sesión 1 Décimo Proceso Clasificación. Comité Clasificación de Especies Silvestres.

Mitsopoulos, I., Mallinis, G., & Arianoutsou, M. (2014). Wildfire risk assessment in a typical Mediterranean wildland–urban interface of Greece. Environmental Management, 55(4), 900-915. https://doi.org/10.1007/s00267-014-0432-6

Moreira, A., & Troncoso, J. (2014). Representatividad biogeográfica de las Reservas de la Biosfera de Chile. In Reservas de la Biósfera de Chile – Laboratorios para la Sustentabilidad (pp. 24–61).

Muñoz, M., Núñez, H., & Yáñez, J. (1997). Libro rojo de los sitios prioritarios para la conservación de la biodiversidad en Chile. Ambiente Y Desarrollo, 13(2), 90-99.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. https://doi.org/10.1038/35002501

Norzagaray-Campos, M., Muñoz-Sevilla, P., Espinosa-Carreón, L., Ruíz-Guerrero, R., González-Ocampo, H., & Llanes-Cárdenas, O. (2016). Erosivity indicators based on rainfall in Northwestern Mexico. Journal of Environmental Engineering and Landscape Management, 24(2), 133-142. https://doi.org/10.3846/16486897.2015.1106405

Pedernera, P., & Julio, G. (1999). Improving the economic efficiency of combatting forest fires in Chile: The KITRAL system. Proceedings of Symposium on Fire Economics, Planning and Policy: Bottom Lines, 173, 149-155.

Pourtaghi, Z. S., Pourghasemi, H. R., & Rossi, M. (2015). Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran. Environmental Earth Sciences, 73(4), 1515-1533. https://doi.org/10.1007/s12665-014-3502-4

Saglam, B., Bilgili, E., Dincdurmaz, B., Kadiogulari, A. I., & Kücük, Ö. (2008). Spatio-temporal analysis of forest fire risk and danger using LANDSAT imagery. Sensors, 8(6), 3970-3987. https://doi.org/10.3390/s8063970

Salazar, A., & Moreira, A. (2014). Reserva de la Biosfera La Campana – Peñuelas: micro-región modelo para la planificación del desarrollo regional sustentable. In Reservas de la Biosfera de Chile – Laboratorios para la Sustentabilidad (pp. 106-122).

Salazar, A., Moreira, A., & Río, C. (2015). La Campana-Peñuelas Biosphere Reserve in Central Chile: threats and challenges in a peri-urban transition zone. Management and Policy Issues, 7(1), 49-54.

Salis, M., Ager, A., Finney, M., Arca, B., & Spano, D. (2014). Analyzing spatiotemporal changes in wildfire regime and exposure across a Mediterranean fire-prone area. Natural Hazards, 71(3), 1389-1418. https://doi.org/10.1007/s11069-013-0951-0

Salvati, L., & Ferrara, A. (2014). Do land cover changes shape sensitivity to forest fires in peri-urban areas?. Urban Forestry and Urban Greening, 13(3), 571-575. https://doi.org/10.1016/j.ufug.2014.03.004

Sivrikaya, F., Sağlam, B., Akay, A. E., & Bozali, N. (2014). Evaluation of forest fire risk with GIS. Polish Journal of Environmental Studies, 23(1), 187-194.

Stephens, S. L., Millar, C. I., & Collins, B. M. (2010). Operational approaches to managing forests of the future in Mediterranean regions within a context of changing climates. Environmental Research Letters, 5(2), 024003. https://doi.org/10.1088/1748-9326/5/2/024003

Úbeda, X., & Sarricolea, P. (2016). Wildfires in Chile: A review. Global and Planetary Change, 146, 152-161. https://doi.org/10.1016/j.gloplacha.2016.10.004

UNESCO. (2015). Man and the Biosphere Programme. Retrieved from http://www.unesco.org/new/en/natural-sciences/environment/ecological-sciences/man-and-biosphere-programme/

Van Wilgen, B., le Maitre, D., & Kriger, F. (1985). Fire modeling in South African fynbos (macchia) vegetation and predictions from Rothermels fire model. Applied Ecology, 22(1), 207-213. https://doi.org/10.2307/2403338

Venegas, F. (2015). Falta de planificación y política economicista amenazan la Reserva Mundial de la Biósfera La Campana-Peñuelas. El Observador. Santiago, Chile.

Verbesselt, J., Fleck, S., & Coppin, P. (2002). Estimation of fuel moisture content towards Fire Risk Assessment: A review. D. X. Viegas, M. G. Cruz, L. M. Silva, A. J. Ollero (Eds.). Forest fire research & wildland fire safety. Millpress, pp 55-67.

Viedma, O. (2008). The influence of topography and fire in controlling landscape composition and structure in Sierra de Gredos (Central Spain). Landscape Ecology, 23(6), 657-672. https://doi.org/10.1007/s10980-008-9228-5