An evaluation for sustainable mobility extended by D numbers
Abstract
How to evaluate the impact of transport measures on city sustainability effectively is still an open issue, and it can be abstracted as one of the multiple criteria decision making problems. In this paper, a new method based on D numbers is proposed to evaluate the sustainable mobility of city. D number is a new mathematical tool to represent and deal uncertain information. The property of integration of D numbers is employed to fusion information. A numerical example of carsharing demonstrates the effectiveness of the proposed method.
First published online 31 May 2019
Keyword : belief function, D numbers, evidence theory, sustainability, decision making
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Amegah, A. K., & Agyei-Mensah, S. (2017). Urban air pollution in Sub-Saharan Africa: Time for action. Environmental Pollution, 220(Part A), 738-743. https://doi.org/10.1016/j.envpol.2016.09.042
Ampudia-Renuncio, M., Guirao, B., & Molina, R. (2018). The impact of free-floating carsharing on sustainable cities: analysis of first experiences in Madrid with the university campus. Sustainable Cities and Society, 43, 462-475. https://doi.org/10.1016/j.scs.2018.09.019
Anand, S., & Sen, A. (2000). Human development and economic sustainability. World Development, 28(12), 2029-2049. https://doi.org/10.1016/S0305-750X(00)00071-1
Awasthi, A., & Chauhan, S. S. (2011). Using AHP and Dempster–Shafer theory for evaluating sustainable transport solutions. Environmental Modelling & Software, 26(6), 787-796. https://doi.org/10.1016/j.envsoft.2010.11.010
Awasthi, A., & Chauhan, S. S. (2012). A hybrid approach integrating Affinity Diagram, AHP and fuzzy TOPSIS for sustainable city logistics planning. Applied Mathematical Modelling, 36(2), 573-584. https://doi.org/10.1016/j.apm.2011.07.033
Awasthi, A., Chauhan, S. S., Hurteau, X., & Breuil, D. (2008). An analytical hierarchical process-based decision-making approach for selecting car-sharing stations in medium size agglomerations. International Journal of Information and Decision Sciences, 1(1), 66-97. https://doi.org/10.1504/IJIDS.2008.020049
Bachmann, F., Hanimann, A., Artho, J., & Jonas, K. (2018). What drives people to carpool? Explaining carpooling intention from the perspectives of carpooling passengers and drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 59(Part A), 260-268. https://doi.org/10.1016/j.trf.2018.08.022
Banister, D. (2008). The sustainable mobility paradigm. Transport Policy, 15(2), 73-80.
https://doi.org/10.1016/j.tranpol.2007.10.005
Belenky, A. S. (2013). Operations research in transportation systems: Ideas and schemes of optimization methods for strategic planning and operations management (Vol. 20). Springer Science & Business Media.
Bian, T., Zheng, H., Yin, L., & Deng, Y. (2018). Failure mode and effects analysis based on D numbers and TOPSIS. Quality and Reliability Engineering International, 34(4), 501-515. https://doi.org/10.1002/qre.2268
Browne, D., O’Regan, B., & Moles, R. (2008). Use of ecological footprinting to explore alternative transport policy scenarios in an Irish city-region. Transportation Research Part D: Transport and Environment, 13(5), 315-322. https://doi.org/10.1016/j.trd.2008.03.009
Burton, I. (1987). Report on reports: Our common future: The world commission on environment and development. Environment: Science and Policy for Sustainable Development, 29(5), 25-29. https://doi.org/10.1080/00139157.1987.9928891
Car2go blog. (2018). “We are 3 million!”. Retrieved from https://blog.car2go.com/2018/02/07/we-are3-million/
Carteni, A. (2017). A new look in designing sustainable city logistics road pricing schemes. WIT Transactions on Ecology and the Environment, 223, 171-181. https://doi.org/10.2495/SC170151
Carteni, A. (2018). A cost-benefit analysis based on the carbon footprint derived from plug-in hybrid electric buses for urban public transport services. Wseas Transactions on Environment and Development, 14, 125-135. Retrieved from http://hdl.handle.net/11591/390642
Cartenì, A., Cascetta, E., & de Luca, S. (2016). A random utility model for park & carsharing services and the pure preference for electric vehicles. Transport Policy, 48, 49-59. https://doi.org/10.1016/j.tranpol.2016.02.012
Cartenì, A., De Guglielmo, M. L., & Pascale, N. (2018). Congested urban areas with high interactions between vehicular and pedestrian flows: A cost-benefit analysis for a sustainable transport policy in Naples, Italy. The Open Transportation Journal, 12(1), 273-288. https://doi.org/10.2174/1874447801812010273
Cartenì, A., De Guglielmo, M. L., Pascale, N., & Calabrese, M. (2017). An adaptive rational decisionmaking process for developing sustainable urban mobility plans. International Journal of Civil Engineering and Technology, 8(7), 1147-1156. http://hdl.handle.net/11591/390647
Cascetta, E. (2009). Transportation systems analysis: models and applications (Vol. 29). Springer Science & Business Media. https://doi.org/10.1007/978-0-387-75857-2_2
Cascetta, E., & Pagliara, F. (2013). Public engagement for planning and designing transportation systems. Procedia-Social and Behavioral Sciences, 87, 103-116. https://doi.org/10.1016/j.sbspro.2013.10.597
Cascetta, E., Carteni, A., & Henke, I. (2017). Acceptance and equity in advanced path-related road pricing schemes. In 5th IEEE International Conference Models and Technologies for Intelligent Transportation Systems (MT-ITS) (pp. 492-496). IEEE. https://doi.org/10.1109/MTITS.2017.8005722
Cascetta, E., Carteni, A., Pagliara, F., & Montanino, M. (2015). A new look at planning and designing transportation systems: A decision-making model based on cognitive rationality, stakeholder engagement and quantitative methods. Transport Policy, 38, 27-39. https://doi.org/10.1016/j.tranpol.2014.11.005
Chen, L., & Deng, X. (2018a). A modified method for evaluating sustainable transport solutions based on AHP and Dempster–Shafer evidence theory. Applied Sciences, 8(4), 563. https://doi.org/10.3390/app8040563
Chen, L., & Deng, Y. (2018b). A new failure mode and effects analysis model using Dempster–Shafer evidence theory and grey relational projection method. Engineering Applications of Artificial Intelligence, 76, 13-20. https://doi.org/10.1016/j.engappai.2018.08.010
Cleary, J. (2009). Life cycle assessments of municipal solid waste management systems: A comparative analysis of selected peer-reviewed literature. Environment International, 35(8), 1256-1266. https://doi.org/10.1016/j.envint.2009.07.009
Cordera, R., dell’Olio, L., Ibeas, A., & Ortúzar, J. D. D. (2018). Demand for environmentally friendly vehicles: A review and new evidence. International Journal of Sustainable Transportation, 13(3), 210-223. https://doi.org/10.1080/15568318.2018.1459969
Dempsey, N., Bramley, G., Power, S., & Brown, C. (2011). The social dimension of sustainable development: Defining urban social sustainability. Sustainable Development, 19(5), 289-300. https://doi.org/10.1002/sd.417
Dempster, A. P. (2008). Upper and lower probabilities induced by a multivalued mapping. In Classic works of the Dempster–Shafer theory of belief functions (pp. 57-72). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44792-4_3
Deng, X., & Deng, Y. (2018). D-AHP method with different credibility of information. Soft Computing, 23(2), 683-691. https://doi.org/10.1007/s00500-017-2993-9
Deng, Y. (2012). D numbers: theory and applications. Journal of Information & Computational Science, 9(9), 2421-2428.
Domarchi, C., Coeymans, J. E., & de Dios Ortúzar, J. (2018). Shared taxis: modelling the choice of a paratransit mode in Santiago de Chile. Transportation, 1-26. https://doi.org/10.1007/s11116-018-9926-z
Eliasson, J. (2009). A cost–benefit analysis of the Stockholm congestion charging system. Transportation Research Part A: Policy and Practice, 43(4), 468-480. https://doi.org/10.1016/j.tra.2008.11.014
Fan, G., Zhong, D., Yan, F., & Yue, P. (2016). A hybrid fuzzy evaluation method for curtain grouting efficiency assessment based on an AHP method extended by D numbers. Expert Systems with Applications, 44, 289-303. https://doi.org/10.1016/j.eswa.2015.09.006
Fei, L., & Deng, Y. (2018). A new divergence measure for basic probability assignment and its applications in extremely uncertain environments. International Journal of Intelligent Systems, 34(4), 584600. https://doi.org/10.1002/int.22066
Fei, L., Deng, Y., & Hu, Y. (2018). DS-VIKOR: A new multi-criteria decision-making method for supplier selection. International Journal of Fuzzy Systems, 21(1), 157-175. https://doi.org/10.1007/s40815-018-0543-y
Guan, X., Liu, H., Yi, X., & Zhao, J. (2018). The improved combination rule of D Numbers and its application in radiation source identification. Mathematical Problems in Engineering, 2018, ID 6025680. https://doi.org/10.1155/2018/6025680
Han, Y., & Deng, Y. (2018a). An enhanced fuzzy evidential DEMATEL method with its application to identify critical success factors. Soft Computing, 22(15), 5073-5090. https://doi.org/10.1007/s00500-018-3311-x
Han, Y., & Deng, Y. (2018b). A hybrid intelligent model for assessment of critical success factors in high-risk emergency system. Journal of Ambient Intelligence and Humanized Computing, 9(6), 19331953. https://doi.org/10.1007/s12652-018-0882-4
Han, Y., & Deng, Y. (2018c). An evidential fractal analytic hierarchy process target recognition method. Defence Science Journal, 68(4), 367-373. https://doi.org/10.14429/dsj.68.11737
Hashemkhani Zolfani, S., Maknoon, R., & Zavadskas, E. K. (2016). An introduction to prospective multiple attribute decision making (PMADM). Technological and Economic Development of Economy, 22(2), 309-326. https://doi.org/10.3846/20294913.2016.1150363
Johnson, E. M., & Huber, G. P. (1977). The technology utility assessment. IEEE Transactions on Systems, Man, and Cybernetics, 7(5), 311-325. https://doi.org/10.1109/TSMC.1977.4309719
Kaklauskas, A., Herrera-Viedma, E., Echenique, V., Zavadskas, E. K., Ubarte, I., Mostert, A., Podvezko, V., Binkyte, A., & Podviezko, A. (2018). Multiple criteria analysis of environmental sustainability and quality of life in post-Soviet states. Ecological Indicators, 89, 781-807. https://doi.org/10.1016/j.ecolind.2017.12.070
Katzev, R. (2003). Car sharing: A new approach to urban transportation problems. Analyses of Social Issues and Public Policy, 3(1), 65-86. https://doi.org/10.1111/j.1530-2415.2003.00015.x
Keeney, R. L., Raiffa, H., & Rajala, D. W. (1979). Decisions with multiple objectives: Preferences and value trade-offs. IEEE Transactions on Systems, Man, and Cybernetics, 9(7), 403-403. https://doi.org/10.1109/TSMC.1979.4310245
Keshavarz Ghorabaee, M., Zavadskas, E. K., Amiri, M., & Turskis, Z. (2016). Extended EDAS method for fuzzy multi-criteria decision-making: an application to supplier selection. International Journal of Computers Communications & Control, 11(3), 358-371. https://doi.org/10.15837/ijccc.2016.3.2557
Kunreuther, H., Grossi, P., Seeber, N., & Smyth, A. (2003). A framework for evaluating the cost-effectiveness of mitigation measures. Columbia University, USA.
Larson, E. D. (2006). A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy for Sustainable Development, 10(2), 109-126. https://doi.org/10.1016/S0973-0826(08)60536-0
Lazauskas, M., Zavadskas, E. K., & Šaparauskas, J. (2015). Ranking of priorities among the Baltic capital cities for the development of sustainable construction. E & M Ekonomie a Management, 18(2), 15-24. https://doi.org/10.15240/tul/001/2015-2-002
Li, M., Zhang, Q., & Deng, Y. (2018). Evidential identification of influential nodes in network of networks. Chaos, Solitons & Fractals, 117, 283-296. https://doi.org/10.1016/j.chaos.2018.04.033
Li, X., & Chen, X. (2018). D-Intuitionistic hesitant fuzzy sets and their application in multiple attribute decision making. Cognitive Computation, 10(3), 496-505. https://doi.org/10.1007/s12559-018-9544-2
Li, Y., & Deng, Y. (2018). Generalized ordered propositions fusion based on belief entropy. International Journal of Computers, Communications & Control, 13(5), 792-807. https://doi.org/10.15837/ijccc.2018.5.3244
Lin, S., Li, C., Xu, F., Liu, D., & Liu, J. (2018). Risk identification and analysis for new energy power system in China based on D numbers and decision-making trial and evaluation laboratory (DEMATEL). Journal of Cleaner Production, 180, 81-96. https://doi.org/10.1016/j.jclepro.2018.01.153
Litman, T., & Burwell, D. (2006). Issues in sustainable transportation. International Journal of Global Environmental Issues, 6(4), 331-347. https://EconPapers.repec.org/RePEc:ids:ijgenv:v:6:y:2006:i:4 :p:331-347
Liu, H. C., You, J. X., Fan, X. J., & Lin, Q. L. (2014). Failure mode and effects analysis using D numbers and grey relational projection method. Expert Systems with Applications, 41(10), 4670-4679. https://doi.org/10.1016/j.eswa.2014.01.031
Mo, H., & Deng, Y. (2016). A new aggregating operator for linguistic information based on D numbers. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 24(06), 831-846. https://doi.org/10.1142/S0218488516500379
Mo, H., & Deng, Y. (2018). A new MADA methodology based on D numbers. International Journal of Fuzzy Systems, 20(8), 2458-2469. https://doi.org/10.1007/s40815-018-0514-3
Moya-Gómez, B., & García-Palomares, J. C. (2017). The impacts of congestion on automobile accessibility. What happens in large European cities?. Journal of Transport Geography, 62, 148-159. https://doi.org/10.1016/j.jtrangeo.2017.05.014
Naess, P. (2001). Urban planning and sustainable development. European Planning Studies, 9(4), 503524. https://doi.org/10.1080/713666490
Nordlund, A. M., & Garvill, J. (2003). Effects of values, problem awareness, and personal norm on willingness to reduce personal car use. Journal of Environmental Psychology, 23(4), 339-347. https://doi.org/10.1016/S0272-4944(03)00037-9
Ogilvie, D., Egan, M., Hamilton, V., & Petticrew, M. (2004). Promoting walking and cycling as an alternative to using cars: systematic review. BMJ, 329, 763. https://doi.org/10.1136/bmj.38216.714560.55
Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research, 178(2), 514-529. https://doi.org/10.1016/j.ejor.2006.01.020
Ortuzar, J., & Willumsen, L. G. (2011). Modelling transport (4th ed.). John Wiley & Sons.
Rai, H. B., van Lier, T., Meers, D., & Macharis, C. (2017). Improving urban freight transport sustainability: Policy assessment framework and case study. Research in Transportation Economics, 64, 26-35. https://doi.org/10.1016/j.retrec.2017.08.005
Rehermann, F., & Pablo-Romero, M. (2018). Economic growth and transport energy consumption in the Latin American and Caribbean countries. Energy Policy, 122, 518-527. https://doi.org/10.1016/j.enpol.2018.08.006
Reisi, M., Aye, L., Rajabifard, A., & Ngo, T. (2014). Transport sustainability index: Melbourne case study. Ecological Indicators, 43, 288-296. https://doi.org/10.1016/j.ecolind.2014.03.004
Saltelli, A., Chan, K., & Scott, E. M. (Eds.). (2000). Sensitivity analysis (Vol. 1). New York: Wiley.
Shafer, G. (1976). A mathematical theory of evidence (Vol. 42). Princeton University Press.
Shaheen, S. A., Sperling, D., & Wagner, C. (1999). A short history of Carsharing in the 90’s. The Journal of World Transport Policy & Practice, 5, 18-40. Retrieved from https://escholarship.org/uc/ item/6p3305b0
Siksnelyte, I., Zavadskas, E. K., Bausys, R., & Streimikiene, D. (2019). Implementation of EU energy policy priorities in the Baltic Sea Region countries: Sustainability assessment based on neutrosophic MULTIMOORA method. Energy Policy, 125, 90-102. https://doi.org/10.1016/j.enpol.2018.10.013
Siksnelyte, I., Zavadskas, E., Streimikiene, D., & Sharma, D. (2018). An overview of multi-criteria decision-making methods in dealing with sustainable energy development issues. Energies, 11(10), 2754. https://doi.org/10.3390/en11102754
Singh, R. K., Murty, H. R., Gupta, S. K., & Dikshit, A. K. (2009). An overview of sustainability assessment methodologies. Ecological Indicators, 9(2), 189-212. https://doi.org/10.1016/j.ecolind.2008.05.011
Singh, S., Olugu, E. U., Musa, S. N., Mahat, A. B., & Wong, K. Y. (2016). Strategy selection for sustainable manufacturing with integrated AHP-VIKOR method under interval-valued fuzzy environment. The International Journal of Advanced Manufacturing Technology, 84(1-4), 547-563. https://doi.org/10.1007/s00170-015-7553-9
Smets, P., & Kennes, R. (1994). The transferable belief model. Artificial Intelligence, 66(2), 191-234.
https://doi.org/10.1016/0004-3702(94)90026-4
Social network of Alumniportal Deutschland. (2015). Mobile, flexible and eco-friendly the car sharing boom is not limited to Germany alone. Retrieved from https://www.alumniportal-deutschland.org/ en/globalgoals/sdg-12-consumption/car-sharing/
Soria-Lara, J. A., & Banister, D. (2018). Evaluating the impacts of transport backcasting scenarios with multi-criteria analysis. Transportation Research Part A: Policy and Practice, 110, 26-37. https://doi.org/10.1016/j.tra.2018.02.004
Steenberghen, T., & Lopez, E. (2008). Overcoming barriers to the implementation of alternative fuels for road transport in Europe. Journal of Cleaner Production, 16(5), 577-590. https://doi.org/10.1016/j.jclepro.2006.12.001
Su, C. M., Horng, D. J., Tseng, M. L., Chiu, A. S., Wu, K. J., & Chen, H. P. (2016). Improving sustainable supply chain management using a novel hierarchical grey-DEMATEL approach. Journal of Cleaner Production, 134(Part B), 469-481. https://doi.org/10.1016/j.jclepro.2015.05.080
Thill, J. C., Rogova, G., & Yan, J. (2004). Evaluating benefits and costs of intelligent transportation systems elements from a planning perspective. Research in Transportation Economics, 8, 571-603. https://doi.org/10.1016/S0739-8859(04)08025-4
Toledo, T., & Koutsopoulos, H. N. (2004). Statistical validation of traffic simulation models. Transportation Research Record, 1876(1), 142-150. https://doi.org/10.3141/1876-15
Venables, A. J. (2007). Evaluating urban transport improvements: cost–benefit analysis in the presence of agglomeration and income taxation. Journal of Transport Economics and Policy (JTEP), 41(2), 173-188.
Wei, G., Alsaadi, F. E., Hayat, T., & Alsaedi, A. (2018). Bipolar fuzzy Hamacher aggregation operators in multiple attribute decision making. International Journal of Fuzzy Systems, 20(1), 1-12. https://doi.org/10.1007/s40815-017-0338-6
Wellar, B. (2009). Sampler of commentaries on methods and techniques that could be used in making decisions about identifying, Adopting or implementing sustainable transport practices. Canada: Wellar Consulting Inc.
Wellmann, T., Govindswamy, K., & Tomazic, D. (2013). Integration of engine start/stop systems with emphasis on NVH and launch behavior. SAE International Journal of Engines, 6(2), 1368-1378. https://doi.org/10.4271/2013-01-1899
World Carshare Consortium. (2009). One Thousand World Carshare Cities in 2009. Retrieved from http://ecoplan.org/carshare/general/cities.htm
Xiao, F. (2018). A novel multi-criteria decision making method for assessing health-care waste treatment technologies based on D numbers. Engineering Applications of Artificial Intelligence, 71, 216225. https://doi.org/10.1016/j.engappai.2018.03.002
Yang, H., Deng, Y., & Jones, J. (2018). Network division method based on cellular growth and Physarum-inspired network adaptation. International Journal of Unconventional Computing, 13(6), 477-491. Retrieved from http://www.oldcitypublishing.com/pdf/8918
Yin, L., Deng, X., & Deng, Y. (2019). The negation of a basic probability assignment. IEEE Transactions on Fuzzy Systems, 27(1), 135-143. https://doi.org/10.1109/TFUZZ.2018.2871756
Zavadskas, E. K., Antuchevičienė, J., & Chatterjee, P. (2019). Multiple-Criteria Decision-Making (MCDM) techniques for business processes information management. Information, 10(1), 1-7. https://doi.org/10.3390/info10010004
Zavadskas, E. K., Kalibatas, D., & Kalibatiene, D. (2016). A multi-attribute assessment using WASPAS for choosing an optimal indoor environment. Archives of Civil and Mechanical Engineering, 16(1), 76-85. https://doi.org/10.1016/j.acme.2015.10.002
Zhang, H., & Deng, Y. (2018). Engine fault diagnosis based on sensor data fusion considering information quality and evidence theory. Advances in Mechanical Engineering, 10(11), 1687814018809184. https://doi.org/10.1177/1687814018809184