Share:


Identify and rank the challenges of implementing sustainable Supply Chain Blockchain Technology using the Bayesian Best Worst Method

    Peide Liu Affiliation
    ; Ayad Hendalianpour Affiliation
    ; Mohammad Hamzehlou Affiliation
    ; Mohammd Reza Feylizadeh Affiliation
    ; Jafar Razmi Affiliation

Abstract

Globalization initiated the challenges in Supply Chain (SC) such as management and control. In this situation, Blockchain as a digital distributed ledger can guarantee clarity, tractability, and safety. Many case studies proved that we can use Blockchain Technology (BT) to solve global supply chain problems especially in smart contracts with their potential applications. BT is in its early period and it is hard to find supply chains that have successfully implemented this technology to track their sustainable actions. Therefore, it is worth studying about the role of customers, members, domestic, national, and international challenges that could resist implementing Blockchain and may affect SC sustainability. Accordingly, four categories of barriers to the use of BT are introduced which are inter-organizational, intra-organizational, technical, and external barriers. Then with Bayesian Best Worst Method, we ranked the BT barriers and the sub-barriers. The study illustrates the interconnection of these barriers and the priority of each element. The lack of business models and the best practices in implementing Blockchain technology is a challenge and it is important that practitioners acknowledge these barriers in the first steps.


First published online 04 May 2021

Keyword : Supply Chain, Blockchain Technology, Bayesian Best Worst Method, sustainable

How to Cite
Liu, P., Hendalianpour, A., Hamzehlou, M., Feylizadeh, M. R., & Razmi, J. (2021). Identify and rank the challenges of implementing sustainable Supply Chain Blockchain Technology using the Bayesian Best Worst Method. Technological and Economic Development of Economy, 27(3), 656-680. https://doi.org/10.3846/tede.2021.14421
Published in Issue
May 25, 2021
Abstract Views
2628
PDF Downloads
2029
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abhishek, N., & Divyashree, M. S. (2019). Environmental friendly supply chain management – a perception analysis. Journal of Supply Chain Management, 8(2), 45–51. http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=22771387&AN=138765370&h=FaYhWygq97nSk1yIoGvL9M5qleVLOrS57gcbuPk4sJCHM7G2WyNDc9%2BRkFO%2F0 PR1OUPsr%2FwfWnhS8buMXOCeQw%3D%3D&crl=c

Adams, R., Kewell, B., & Parry, G. (2018). Blockchain for good? Digital ledger technology and sustainable development goals. In W. Leal Filho, R. Marans, & J. Callewaert (Eds.), Handbook of sustainability and social science research (pp. 127–140). Springer. https://doi.org/10.1007/978-3-319-67122-2_7

Borgatti, S. P., & Li, X. (2009). On social network analysis in a supply chain context. Journal of Supply Chain Management, 45(2), 5–22. https://doi.org/10.1111/j.1745-493X.2009.03166.x

Busse, C., Meinlschmidt, J., & Foerstl, K. (2017). Managing information processing needs in global supply chains: a prerequisite to sustainable supply chain management. Journal of Supply Chain Management, 53(1), 87–113. https://doi.org/10.1111/jscm.12129

Carter, C. R., Rogers, D. S., & Choi, T. Y. (2015). Toward the theory of the supply chain. Journal of Supply Chain Management, 51(2), 89–97. https://doi.org/10.1111/jscm.12073

Choi, T.-M., Feng, L., & Li, R. (2020). Information disclosure structure in supply chains with rental service platforms in the blockchain technology era. International Journal of Production Economics, 221, 107473. https://doi.org/10.1016/j.ijpe.2019.08.008

de Sousa Jabbour, A. B. L., Jabbour, C. J. C., Foropon, C., & Filho, M. G. (2018). When titans meet – Can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors. Technological Forecasting and Social Change, 132, 18–25. https://doi.org/10.1016/j.techfore.2018.01.017

Dolgui, A., Ivanov, D., & Sokolov, B. (2018). Ripple effect in the supply chain: an analysis and recent literature. International Journal of Production Research, 56(1–2), 414–430. https://doi.org/10.1080/00207543.2017.1387680

Ellis, S. C., Shockley, J., & Henry, R. M. (2011). Making sense of supple disruption risk research: a conceptual framework grounded in enactment theory. Journal of Supply Chain Management, 47(2), 65–96. https://doi.org/10.1111/j.1745-493X.2011.03217.x

Eyal, I. (2017). Blockchain technology: transforming libertarian cryptocurrency dreams to finance and banking realities. Computer, 50(9), 38–49. https://doi.org/10.1109/MC.2017.3571042

Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114. https://doi.org/10.1016/j.ijpe.2015.01.003

Fanning, K., & Centers, D. P. (2016). Blockchain and its coming impact on financial services. Journal of Corporate Accounting & Finance, 27(5), 53–57. https://doi.org/10.1002/jcaf.22179

Flynn, B. B., Koufteros, X., & Lu, G. (2016). On theory in supply chain uncertainty and its implications for supply chain integration. Journal of Supply Chain Management, 52(3), 3–27. https://doi.org/10.1111/jscm.12106

Govindan, K., & Hasanagic, M. (2018). A systematic review on drivers, barriers, and practices towards circular economy: a supply chain perspective. International Journal of Production Research, 56(1–2), 278–311. https://doi.org/10.1080/00207543.2017.1402141

Gray, J. V., Skowronski, K., Esenduran, G., & Johnny Rungtusanatham, M. (2013). The reshoring phenomenon: What supply chain academics ought to know and should do. Journal of Supply Chain Management, 49(2), 27–33. https://doi.org/10.1111/jscm.12012

Hendalianpour, A. (2020). Optimal lot-size and price of perishable goods: a novel game-theoretic model using double interval grey numbers. Computers & Industrial Engineering, 149, 106780. https://doi.org/10.1016/j.cie.2020.106780

Hendalianpour, A., Fakhrabadi, M., Sangari, M. S., & Razmi, J. (2020b). A combined benders decomposition and lagrangian relaxation algorithm for optimizing a multi-product, multi-level Omni-channel distribution system. Scientia Iranica (in press). https://doi.org/10.24200/sci.2020.53644.3349

Hendalianpour, A., Fakhrabadi, M., Zhang, X., Feylizadeh, M. R., Gheisari, M., Liu, P., & Ashktorab, N. (2019). Hybrid model of IVFRN-BWM and robust goal programming in agile and flexible supply chain, a case study: automobile industry. IEEE Access, 7, 71481–71492. https://doi.org/10.1109/ACCESS.2019.2915309

Hendalianpour, A., Hamzehlou, M., Feylizadeh, M. R., Xie, N., & Shakerizadeh, M. H. (2020a). Coordination and competition in two-echelon supply chain using grey revenue-sharing contracts. Grey Systems: Theory and Application (in press). https://doi.org/10.1108/GS-04-2020-0056

Hofmann, E., Strewe, U. M., & Bosia, N. (2018). Supply chain finance and blockchain technology: the case of reverse securitisation. Springer. https://books.google.com/books?hl=en&lr=&id=tLIvDwAAQBAJ&oi=fnd&pg=PR5&dq=Hofmann,+E.,+U.+M.+Strewe,+and+N.+Bosia.+2017.+Supply+Chain+Finance+and+Blockchain+Technology:+The+Case+of+Reverse+Securitisation.+Cham:+Springer.&ots=kVXZXUAurW&sig=wxvx32gi-tb794A

Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829–846. https://doi.org/10.1080/00207543.2018.1488086

Kass, R. E., Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1997). Markov chain Monte Carlo in practice. Journal of the American Statistical Association, 92(440), 1645–1646. https://doi.org/10.2307/2965438

Kasten, J. (2019). Blockchain application: the dairy supply chain. Journal of Supply Chain Management Systems, 8(1), 45–54. http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=22771387&AN=136630613&h=VMq%2BA6q3EQUOIRGqZroWvm0dlz2WkrSUuCegNFf%2FvdqDht6W%2B4KAA%2BWfKeEh9s%2BeRkV95UkksRdEv3q9oxquGA%3D%3D&crl=c

Manupati, V. K., Schoenherr, T., Ramkumar, M., Wagner, S. M., Pabba, S. K., & Inder Raj Singh, R. (2020). A blockchain-based approach for a multi-echelon sustainable supply chain. International Journal of Production Research, 58(7), 2222–2241. https://doi.org/10.1080/00207543.2019.1683248

Mcivor, R. (2013). Understanding the manufacturing location decision: The case for the transaction cost and capability perspectives. Journal of Supply Chain Management, 49(2), 23–26. https://doi.org/10.1111/jscm.12010

Mohammadi, M., & Rezaei, J. (2019). Bayesian best-worst method: A probabilistic group decision making model. Omega, 96, 102075. https://doi.org/10.1016/j.omega.2019.06.001

Ølnes, S., Ubacht, J., & Janssen, M. (2017). Blockchain in government: Benefits and implications of distributed ledger technology for information sharing. Government Information Quarterly, 34(3), 355–364. https://doi.org/10.1016/j.giq.2017.09.007

Plummer, M. (2004). JAGS: Just another Gibbs sampler. http://www3.jouy.inra.fr/miaj/public/matrisq/Contacts/applibugs.07_11_08.plummer.pdf

Rajeev, A., Pati, R. K., Padhi, S. S., & Govindan, K. (2017). Evolution of sustainability in supply chain management: A literature review. Journal of Cleaner Production, 162, 299–314. https://doi.org/10.1016/j.jclepro.2017.05.026

Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126–130. https://doi.org/10.1016/j.omega.2015.12.001

Saberi, S., Kouhizadeh, M., & Sarkis, J. (2018). Blockchain technology: A panacea or pariah for resources conservation and recycling? Resources, Conservation and Recycling, 130, 80–81. https://doi.org/10.1016/j.resconrec.2017.11.020

Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019a). Blockchain technology and its relationships to sustainable supply chain management. International Journal of Production Research, 57(7), 2117– 2135. https://doi.org/10.1080/00207543.2018.1533261

Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019b). Blockchain technology and its relationships to sustainable supply chain management. International Journal of Production Research, 57(7), 2117– 2135. https://doi.org/10.1080/00207543.2018.1533261

Salo, A. A., & Hämäläinen, R. P. (1997). On the measurement of preferences in the analytic hierarchy process. Journal of Multi-Criteria Decision Analysis, 6(6), 309–319. https://doi.org/10.1002/(SICI)1099-1360(199711)6:6<309::AID-MCDA163>3.0.CO;2-2

Schmidt, C. G., & Wagner, S. M. (2019). Blockchain and supply chain relations: A transaction cost theory perspective. Journal of Purchasing and Supply Management, 25(4), 100552. https://doi.org/10.1016/j.pursup.2019.100552

Schniederjans, D. G., Curado, C., & Khalajhedayati, M. (2020). Supply chain digitisation trends: An integration of knowledge management. International Journal of Production Economics, 220, 107439. https://doi.org/10.1016/j.ijpe.2019.07.012

Skilton, P. F., & Robinson, J. L. (2009). Traceability and normal accident theory: How does supply network complexity influence the traceability of adverse events? Journal of Supply Chain Management, 45(3), 40–53. https://doi.org/10.1111/j.1745-493X.2009.03170.x

Tian, F. (2012). An information system for food safety monitoring in supply chains based on HACCP, blockchain and internet of things [Doctoral dissertation]. WU Vienna University of Economics and Business. http://epub.wu.ac.at/

Tian, F. (2016). An agri-food supply chain traceability system for China based on RFID & blockchain technology. In 13th International Conference on Service Systems and Service Management (ICSSSM). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICSSSM.2016.7538424

Tokar, T., & Swink, M. (2019). Public policy and supply chain management: using shared foundational principles to improve formulation, implementation, and evaluation. Journal of Supply Chain Management, 55(2), 68–79. https://doi.org/10.1111/jscm.12190

Underwood, S. (2016). Blockchain beyond bitcoin. Communications of the ACM, 59(11), 15–17. https://doi.org/10.1145/2994581

Wang, Y., Singgih, M., Wang, J., & Rit, M. (2019). Making sense of blockchain technology: How will it transform supply chains? International Journal of Production Economics, 211, 221–236. https://doi.org/10.1016/j.ijpe.2019.02.002

Yatsalo, B. I., & Martinez, L. (2018). Fuzzy rank acceptability analysis: A confidence measure of ranking fuzzy numbers. IEEE Transactions on Fuzzy Systems, 26(6), 3579–3593. https://doi.org/10.1109/TFUZZ.2018.2838063

Zhao, G., Liu, S., Lopez, C., Lu, H., Elgueta, S., Chen, H., & Boshkoska, B. M. (2019). Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions. Computers in Industry, 109, 83–99. https://doi.org/10.1016/j.compind.2019.04.002

Zijm, H., Knofius, N., & van der Heijden, M. (2019). Additive Manufacturing and Its Impact on the Supply Chain. In H. Zijm, M. Klumpp, A. Regattieri, & S. Heragu (Eds.), Operations, logistics and supply chain management (pp. 521–543). Springer. https://doi.org/10.1007/978-3-319-92447-2_23