Constructing a network evaluation framework for improving the financial ecosystem in small-medium size firms
Abstract
This study presents an evaluation framework to measure the various operations to acquire the optimal core operation (CO) when financier provides the supply chain finance (SCF) services in smartphone industry supply chain (SC). The proposed model applies the modify Delphi method and analytic network process (ANP). First, the evaluation model establishes a network with three criteria, eleven sub-criteria and four operations. Next, the ANP is utilized to the framework to obtain the relative weights of the criteria. Finally, the application of the multi-criteria decision making process will list the optimal CO on the basis of their rankings in the framework.The proposed model and the relevant research results can provide academic support to the decision-makers on finance sector with a valuable objective guide for assessing the CO of smartphone industry SC programs to determine the optimal solution in their actual administration of SCF service practices.
Keyword : Small-Medium Size Enterprise (SMEs), supply chain finance (SCF), core operation (CO), dependent relationship (DR), analytic network process (ANP), smartphone industry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ali-Yrkko, J.; Rouvinen, P.; Seppala, T.; Yla-Anttila, P. 2011. Who captures value in global supply chains? Case Nokia N95 Smartphone, Journal of Industry, Competition and Trade 11(3): 263–278. https://doi.org/10.1007/s10842-011-0107-4
Aragones-Beltran, P.; Chaparro-Gonzalez, F.; Pastor-Ferrando, J.; Pla-Rubio, A. 2014. An AHP/ANP-based multi-criteria decision approach for the selection of solar-thermal power plant investment projects, Energy 66: 222–238. https://doi.org/10.1016/j.energy.2013.12.016
Ashis, M. 2013. Selection of handloom fabrics for summer clothing by AHP method of multi-criteria decision making (MCDM) techniques, International Journal of Management, IT and Engineering 3(8): 265–278.
Berger, A. N.; Udell, G. F. 2006. A more complete conceptual framework for SME finance, Journal of Banking and Finance 30: 2945–2966. https://doi.org/10.1016/j.jbankfin.2006.05.008
Blackman, I. D.; Holland, C. P.; Westcott, T. 2013. Motorola’s global financial supply chain strategy, Supply Chain Management: an International Journal 18(2): 132–147. https://doi.org/10.1108/13598541311318782
Brooks, K. W. 1979. Delphi technique: expanding applications, North Central Association Quarterly 53: 377–385.
Greco, M.; Cricelli, L.; Grimaldi, M. 2013. A strategic management framework of tangible and intangible assets, European Management Journal 31(1): 55–66. https://doi.org/10.1016/j.emj.2012.10.005
Guillen, G.; Badell, M.; Puigjaner, L. 2007. A holistic framework for short-term supply chain management integrating production and corporate financial planning, International Journal of Production Economics 106: 288–306. https://doi.org/10.1016/j.ijpe.2006.06.008
He, X.; Tang, L. 2012. Exploration on building of visualization platform to innovate business operation pattern of supply chain finance, Physics Procedia 33: 1886–1893. https://doi.org/10.1016/j.phpro.2012.05.298
Kristofik, P.; Kok, J.; Vries, S.; Hoff, J. S. 2012. Financial supply chain management-challenges and obstacles, ACRN Journal of Entrepreneurship Perspectives 1(2): 132–143.
Linden, G.; Kraemer, K. L.; Dedrick, J. 2009. Who captures value in a global innovation network? The case of Apple’s iPod, Communications of the ACM 52(3): 140–144. https://doi.org/10.1145/1467247.1467280
Linstone, H. A.; Turoff, M. 1975. The Delphi method: techniques and applications. Addison-Wesley Publishing Company. 620 p.
Liu, S. 2007. Development status and risk prevention of supply chain finance, Journal of China Logistics and Purchasing 7: 68–69.
Lee, J. W., & Kim, S. H. (2000). Using analytic network process and goal programming for interdependent information system project selection, Computers & Operations Research 27(4): 367–382. https://doi.org/10.1016/S0305-0548(99)00057-X
MAZARS. 2011. Supply chain finance: the key link to an efficient supply chain. France [online], [cited 30 May 2014]. Available from Internet: http://www.mazars.ie/mazarspage/download/78136/2023824/file/Supply-Chain-Finance-07-11-11.pdf
Meade, L. M.; Presley, A. 2002. R&D project selection using the analytic network process, IEEE Transactions on Engineering Management 49(1): 59–66. https://doi.org/10.1109/17.985748
Meade, L. M.; Sarkis, J. 1998. Strategic analysis of logistics and supply chain management systems using the analytic network process, Transportation Research Part E: Logistics and Transportation Review 34(3): 201–215. https://doi.org/10.1016/S1366-5545(98)00012-X
Meade, L. M.; Sarkis, J. 1999. Analyzing organizational project alternatives for agile manufacturing processes-an analytical network approach, International Journal of Production Research 37(2): 241–261. https://doi.org/10.1080/002075499191751
More, D.; Basu, P. 2013. Challenges of supply chain finance: a detailed study and a hierarchical model based on the experiences of an Indian firm, Business Process Management Journal 19(4): 624–647. https://doi.org/10.1108/BPMJ-09-2012-0093
Murry, J. W.; Hammons, J. O. 1995. Delphi: a versatile methodology for conducting qualitative research, The Review of Higher Education 18: 423–436. https://doi.org/10.1353/rhe.1995.0008
Parente, F.; Anderson-Parente, J. 1987. Delphi inquiry systems. Wright, G.; Ayton, P. (Eds.). NY: John Wiley and Sons.
Pfohl, H.; Gomm, M. 2009. Supply chain finance: optimizing financial flows in supply chains, Logistics Research 1: 149–161. https://doi.org/10.1007/s12159-009-0020-y
Pourahmad, A.; Hosseini, A.; Banaitis, A.; Nasiri, H.; Banaitiene, N.; Tzeng, G. H. 2015. Combination of fuzzy-AHP and DEMATEL-ANP with GIS in a new hybrid MCDM model used for the selection of the best space for leisure in a blighted urban site, Technological and Economic Development of Economy 21(5): 773–796. https://doi.org/10.3846/20294913.2015.1056279
Randal, W. S.; Farris, M. T. 2009. Supply chain financing: using cash-to-cash variables to strengthen the supply chain, International Journal of Physical Distribution and Logistics Management 39(8): 669–689. https://doi.org/10.1108/09600030910996314
Saaty, T. L. 1980. The analytic hierarchy process. New York: McGraw Hill.
Saaty, T. L. 1996. Decision making with dependence and feedback: the analytic network process. Pittsburgh: RWS Publications.
Saaty, T. L. 1999. Fundamentals of the analytic network process. Kobe Japan: ISAHP.
Sangari, M. S.; Razmi, J; Zolfaghari, S. 2015. Developing a practical evaluation framework for identifying critical factors to achieve supply chain agility, Measurement 62: 205–214. https://doi.org/10.1016/j.measurement.2014.11.002
Saaty, T. L.; Takizawa, M. 1986. Dependence and independence: from linear hierarchies to nonlinear networks, European Journal of Operational Research 26(2): 229–237.
Sarkis, J.; Sunderraj, R. 2002. Hub location at Digital Equipment Corporation: a comprehensive analysis of qualitative and quantitative factors, European Journal of Operational Research 137: 336–347. https://doi.org/10.1016/S0377-2217(01)00138-2
Shahin, A.; Pourhamidi, M. 2013. Proposing a comprehensive and hierarchic framework for prioritizing Isfahan brands using AHP and TOPSIS approaches, International Journal of Applied Decision Sciences 6(2): 160–185. https://doi.org/10.1504/IJADS.2013.053272
Simchi-Levi, D.; Kamisky, P.; Simchi-Levi, E. 2000. Designing and management the supply chain. Concepts, Strategies, and Case Studies Irwin, McGraw-Hill, New York.
Sung, W. C. 2001. Application of Delphi method, a qualitative and quantitative analysis, to the healthcare management, Journal of Healthcare Management 2(2): 11–19.
Theiben, S.; Spinler, S. 2014. Strategic analysis of manufacturer-supplier partnerships: an ANP model for collaborative CO2 reduction management, European Journal of Operational Research 233(2): 383–397. https://doi.org/10.1016/j.ejor.2013.08.023
Tsai, H. Y.; Chang, C. W.; Lin, H. L. 2010. Fuzzy hierarchy sensitive with Delphi method to evaluate hospital organization performance, Expert Systems with Applications 37(8): 5533–5541. https://doi.org/10.1016/j.eswa.2010.02.099
Uygun, O.; Kahveci, T. C.; Taskin, H.; Piristine, B. 2015. Readiness assessment model for institutionalization of SMEs using fuzzy hybrid MCDM techniques, Computers and Industrial Engineering 88: 217–228. https://doi.org/10.1016/j.cie.2015.07.008
Wang, T.; Lan, Q.; Chu, Y. 2013. Supply chain financing model: based on China’s agricultural products supply chain, in Proceedings of the 2nd International Conference on Systems Engineering and Modeling, 153–157. https://doi.org/10.2991/icsem.2013.30
Wu, C. R.; Chang, C. W.; Lin, H. L. 2007a. An organizational performance measurement model based on AHP sensitivity analysis, International Journal of Business Performance Management 9: 77–91. https://doi.org/10.1504/IJBPM.2007.011497
Wu, C. R.; Lin, C. T.; Chen, H. C. 2007b. Evaluating competitive advantage of the location for Taiwanese hospitals, Journal of Information and Optimization Sciences 28(5): 841–868. https://doi.org/10.1080/02522667.2007.10699777
Xu, Y.; Patnayakuni, R.; Tao, F.; Wang, H. 2015. Incomplete interval fuzzy preference relations for supplier selection in supply chain management, Technological and Economic Development of Economy 21(3): 379–404. https://doi.org/10.3846/20294913.2013.876688
Yan, N.; Sun, B. 2013. Coordinating loan strategies for supply chain financing with limited credit, OR Spectrum 35: 1039–1058. https://doi.org/10.1007/s00291-013-0329-4
Yan, N.; Sun, B.; Zhang, H.; Liu, C. 2016. A partial credit guarantee contract in a capital-constrained supply chain: financing equilibrium and coordinating strategy, International Journal of Production Economics 173: 122–133. https://doi.org/10.1016/j.ijpe.2015.12.005
Yazdani-Chamzini, A.; Fouladgar, M. M.; Zavadskas, E. K.; Moini, S. H. H. 2013. Selecting the optimal renewable energy using multicriteria decision making, Journal of Business Economics and Management 14(5): 957–978. https://doi.org/10.3846/16111699.2013.766257
Zaim, S.; Sevkli, M.; Camgoz-Akdag, H.; Demirel, O. F.; Yesim Yayla, A.; Delen, D. 2014. Use of ANP weighted crisp and fuzzy QFD for product development, Expert Systems with Applications 41(9): 4464–4474. https://doi.org/10.1016/j.eswa.2014.01.008