Share:


Decision-making model for designing telecom products/services based on customer preferences and non-preferences

    Andrés Cid-López   Affiliation
    ; Miguel J. Hornos   Affiliation
    ; Ramón Alberto Carrasco   Affiliation
    ; Enrique Herrera-Viedma Affiliation

Abstract

The design of the packages of products/services to be offered by a telecom company to its clients is a complex decision-making process that must consider different criteria to achieve both customer satisfaction and optimization of the company’s resources. In this process, Intuitionistic Fuzzy Sets (IFSs) can be used to manage uncertainty and better represent both preferences and non-preferences expressed by people who value each proposed alternative. We present a novel approach to design/develop new products/services that combines the Lean Six Sigma methodology with IFSs. Its main contribution comes from considering both preferences and nonpreferences expressed by real clients, whereas existing proposals only consider their preferences. By also considering their non-preferences, it provides an additional capacity to manage the high uncertainty in the selection of the commercial plan that best suits each client’s needs. Thus, client satisfaction is increased while improving the company’s corporate image, which will lead to customer loyalty and increased revenue. To validate the presented proposal, it has been applied to a real case study of the telecom sector, in which 2135 users have participated. The results obtained have been analysed and compared with those obtained with a model that does not consider the non-preferences expressed by users.


First published online 27 October 2022

Keyword : decision making, product/service design, product/service development, Lean Six Sigma, Intuitionistic Fuzzy Sets, user satisfaction, telecom sector

How to Cite
Cid-López, A., Hornos, M. J., Carrasco, R. A., & Herrera-Viedma, E. (2022). Decision-making model for designing telecom products/services based on customer preferences and non-preferences. Technological and Economic Development of Economy, 28(6), 1818–1853. https://doi.org/10.3846/tede.2022.17734
Published in Issue
Nov 15, 2022
Abstract Views
801
PDF Downloads
689
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aggarwal, A. G., Sharma, H., & Tandon, A. (2017). An intuitionistic approach for ranking OTA websites under multi criteria group decision making framework. In International Conference Innovation Technology Knowledge (pp. 21–27). https://doi.org/10.15439/2017KM36

Ahmad, S. N. B., & Juhdi, N. (2009). Barriers to preference of using travel e-service among Internet users. Journal of Tourism, 10(1), 1–16.

Ait Haddadene, S. R., Labadie, N., & Prodhon, C. (2016). A GRASP × ILS for the vehicle routing problem with time windows, synchronization and precedence constraints. Expert Systems with Applications, 66, 274–294. https://doi.org/10.1016/j.eswa.2016.09.002

Ait Haddadene, S. R., Labadie, N., & Prodhon, C. (2019). Bicriteria vehicle routing problem with preferences and timing constraints in home health care services. Algorithms, 12(8), 152. https://doi.org/10.3390/a12080152

Albliwi, S. A., Antony, J., & Lim, S. A. H. (2015). A systematic review of Lean Six Sigma for the manufacturing industry. Business Process Management Journal, 21(3), 665–691. https://doi.org/10.1108/BPMJ-03-2014-0019

Albliwi, S., Antony, J., Abdul Halim Lim, S., & van der Wiele, T. (2014). Critical failure factors of Lean Six Sigma: A systematic literature review. International Journal of Quality & Reliability Management, 31(9), 1012–1030. https://doi.org/10.1108/IJQRM-09-2013-0147

Alonso, S., Cabrerizo, F. J., Chiclana, F., Herrera, F., & Herrera-Viedma, E. (2009). Group decision making with incomplete fuzzy linguistic preference relations. International Journal of Intelligent Systems, 24(2), 201–222. https://doi.org/10.1002/int.20332

Amiri, M., Hashemi-Tabatabaei, M., Ghahremanloo, M., Keshavarz-Ghorabaee, M., Zavadskas, E. K., & Kaklauskas, A. (2021). Evaluating life cycle of buildings using an integrated approach based on quantitative-qualitative and simplified best-worst methods (QQM-SBWM). Sustainability, 13(8), 4487. https://doi.org/10.3390/su13084487

Arora, M., & Kumari, S. (2015). Self-Esteem as determinant of invertors’stock market participation: Mediating role of risk preferences and behavioral biases. Psychologia, 58(3), 115–126. https://doi.org/10.2117/psysoc.2015.115

Atanassov, K. T. (1999). Intuitionistic fuzzy sets: Theory and applications. Physica-Verlag. https://doi.org/10.1007/978-3-7908-1870-3

Behret, H. (2014). Group decision making with intuitionistic fuzzy preference relations. Knowledge-Based Systems, 70, 33–43. https://doi.org/10.1016/j.knosys.2014.04.001

Boran, F. E., Genç, S., Kurt, M., & Akay, D. (2009). A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Systems with Applications, 36(8), 11363–11368. https://doi.org/10.1016/j.eswa.2009.03.039

Breyfogle III, F. W. (2003). Implementing Six Sigma: Smarter solutions using statistical methods (2nd ed.). John Wiley & Sons.

Brix, J., & Lauridsen, O. (2014). Improving learning competencies in the context of radical innovation: A team perspective. International Journal of Innovation and Learning, 16(4), 367–383. https://doi.org/10.1504/IJIL.2014.065544

Brue, G., & Formisano, R. A. (2002). Six Sigma for managers. McGraw-Hill.

Brunoe, T. D., Andersen, A. L., Sorensen, D. G., Nielsen, K., & Bejlegaard, M. (2020). Integrated product-process modelling for platform-based co-development. International Journal of Production Research, 58(20), 6185–6201. https://doi.org/10.1080/00207543.2019.1671628

Büyüközkan, G., Göçer, F., & Feyzioglu, O. (2018). Cloud computing technology selection based on interval-valued intuitionistic fuzzy MCDM methods. Soft Computing, 22(15), 5091–5114. https://doi.org/10.1007/s00500-018-3317-4

Cabrerizo, F. J., Alonso, S., & Herrera-Viedma, E. (2009). A consensus model for group decision making problems with unbalanced fuzzy linguistic information. International Journal of Information Technology & Decision Making, 8(01), 109–131. https://doi.org/10.1142/S0219622009003296

Chaira, T. (2011). A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Applied Soft Computing, 11(2), 1711–1717. https://doi.org/10.1016/j.asoc.2010.05.005

Chen, Y., Wang, Y., Nevo, S., Benitez-Amado, J., & Kou, G. (2015). IT capabilities and product innovation performance: The roles of corporate entrepreneurship and competitive intensity. Information & Management, 52(6), 643–657. https://doi.org/10.1016/j.im.2015.05.003

Chien-Chang, C. (2010). An integrated quantitative and qualitative FMCDM model for location choices. Soft Computing, 14(7), 757–771. https://doi.org/10.1007/s00500-009-0463-8

Chugani, N., Kumar, V., Garza-Reyes, J. A., Rocha-Lona, L., & Upadhyay, A. (2017). Investigating the green impact of Lean, Six Sigma and Lean Six Sigma: A systematic literature review. International Journal of Lean Six Sigma, 8(1), 7–32. https://doi.org/10.1108/IJLSS-11-2015-0043

Cid-López, A., Hornos, M. J., Carrasco, R. A., & Herrera-Viedma, E. (2015). A hybrid model for decision-making in the Information and Communications Technology sector. Technological and Economy Development of Economy, 21(5), 731–748. https://doi.org/10.3846/20294913.2015.1056281

Cid-López, A., Hornos, M. J., Carrasco, R. A., & Herrera-Viedma, E. (2016). Applying a linguistic multi-criteria decision-making model to the analysis of ICT suppliers’ offers. Expert Systems with Applications, 57, 127–138. https://doi.org/10.1016/j.eswa.2016.03.025

Cid-López, A., Hornos, M. J., Carrasco, R. A., & Herrera-Viedma, E. (2018). Prioritization of the launch of ICT products and services through linguistic multi-criteria decision-making. Technological and Economic Development of Economy, 24(3), 1231–1257. https://doi.org/10.3846/tede.2018.1423

Cobo, M. J., López‐Herrera, A. G., Herrera‐Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609–1630. https://doi.org/10.1002/asi.22688

Corbett, L. M. (2011). Lean Six Sigma: The contribution to business excellence. International Journal of Lean Six Sigma, 2(2), 118–131. https://doi.org/10.1108/20401461111135019

Cudney, E. A., Venuthurumilli, S. S. J., Materla, T., & Antony, J. (2020). Systematic review of Lean and Six Sigma approaches in higher education. Total Quality Management & Business Excellence, 31(3-4), 231–244. https://doi.org/10.1080/14783363.2017.1422977

Das, P. (2005). Reduction in delay in procurement of materials using Six Sigma philosophy. Total Quality Management & Business Excellence, 16(5), 645–656. https://doi.org/10.1080/14783360500077583

Das, S., Kar, S., & Pal, T. (2017). Robust decision making using intuitionistic fuzzy numbers. Granular Computing, 2(1), 41–54. https://doi.org/10.1007/s41066-016-0024-3

Du, G., Zhang, Y., Liu, X., Jiao, R. J., Xia, Y., & Li, Y. (2019). A review of leader-follower joint optimization problems and mathematical models for product design and development. The International Journal of Advanced Manufacturing Technology, 103(9), 3405–3424. https://doi.org/10.1007/s00170-019-03612-6

Fadly, H. N., & Mohd, Y. S. (2013). Critical success factors of Lean Six Sigma for the Malaysian automotive industry. International Journal of Lean Six Sigma, 4(1), 60–82. https://doi.org/10.1108/20401461311310526

Furterer, S. L. (2016). Lean Six Sigma in service: Applications and case studies. CRC Press. https://doi.org/10.1201/9781420079104

Garg, H. (2017). Distance and similarity measures for intuitionistic multiplicative preference relation and its applications. International Journal for Uncertainty Quantification, 7(2), 117–133. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017018981

George, M. L., Maxey, J., Rowlands, D. T., & Upton, M. (2004). The Lean Six Sigma Pocket Toolbook: A quick reference guide to nearly 100 tools for improving quality and speed. McGraw Hill Professional.

Goldstein, M. (2001). Six Sigma program success factors. Six Sigma Forum Magazine, 1, 36–45.

Gündogdu, F. K., Duleba, S., Moslem, S., & Aydın, S. (2021). Evaluating public transport service quality using picture fuzzy analytic hierarchy process and linear assignment model. Applied Soft Computing, 100, 106920. https://doi.org/10.1016/j.asoc.2020.106920

Haber, N., Fargnoli, M., & Sakao, T. (2020). Integrating QFD for product-service systems with the Kano model and fuzzy AHP. Total Quality Management & Business Excellence, 31(9–10), 929–954. https://doi.org/10.1080/14783363.2018.1470897

Huang, Y. Q. (2017). LDA-based personalized recommendation for Airbnb [Master’s Thesis]. Information Management, Kaohsiung, Taiwan.

Jobber, D., & Ellis-Chadwick, F. (2012). Principles and practice of marketing. McGraw-Hill Higher Education.

Kaplan, R. S., & Norton, D. P. (2001). The strategy-focused organization: How balanced scorecard companies thrive in the new business environment. Harvard Business Press.

Keshavarz-Ghorabaee, M. (2021). Assessment of distribution center locations using a multi-expert subjective–objective decision-making approach. Scientific Reports, 11, 19461. https://doi.org/10.1038/s41598-021-98698-y

Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2018). Simultaneous evaluation of criteria and alternatives (SECA) for multi-criteria decision-making. Informatica, 29(2), 265–280. https://doi.org/10.15388/Informatica.2018.167

Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of objective weights using a new method based on the removal effects of criteria (MEREC). Symmetry, 13(4), 525. https://doi.org/10.3390/sym13040525

Kohli, A. K. (2017). Market orientation in a digital world. Global Business Review, 18(3_suppl), S203–S205. https://doi.org/10.1177/0972150917700769

Koskela-Huotari, K., Patrício, L., Zhang, J., Karpen, I. O., Sangiorgi, D., Anderson, L., & Bogicevic, V. (2021). Service system transformation through service design: Linking analytical dimensions and service design approaches. Journal of Business Research, 136, 343–355. https://doi.org/10.1016/j.jbusres.2021.07.034

Laureani, A., & Antony, J. (2018). Leadership – a critical success factor for the effective implementation of Lean Six Sigma. Total Quality Management and Business Excellence, 29(5–6), 502–523. https://doi.org/10.1080/14783363.2016.1211480

Lima, M. B., & Kubota, F. I. (2022). A modular product design framework for the home appliance industry. The International Journal of Advanced Manufacturing Technology, 120(3), 2311–2330. https://doi.org/10.1007/s00170-022-08896-9

Li, X., Su, J., Zhang, Z., & Bai, R. (2021). Product innovation concept generation based on deep learning and Kansei engineering. Journal of Engineering Design, 32(10), 559–589. https://doi.org/10.1080/09544828.2021.1928023

Liu, Y., Bi, J.-W., & Fan, Z.-P. (2017). Ranking products through online reviews: A method based on sentiment analysis technique and intuitionistic fuzzy set theory. Information Fusion, 36, 149–161. https://doi.org/10.1016/j.inffus.2016.11.012

López-Guerrero, A., Hernández-Gómez, J. A., Velázquez-Victorica, K. I., & Olivares-Fong, L. D. C. (2019). Six Sigma as a competitive strategy: Main applications, implementation areas and critical success factors (CSF). DYNA, 86(209), 160–169. https://doi.org/10.15446/dyna.v86n209.76994

Lu, K., Liao, H., & Zavadskas, E. K. (2021). An overview of fuzzy techniques in supply chain management: Bibliometrics, methodologies, applications and future directions. Technological and Economic Development of Economy, 27(2), 402–458. https://doi.org/10.3846/tede.2021.14433

Marasini, D., Quatto, P., & Ripamonti, E. (2016). Intuitionistic fuzzy sets in questionnaire analysis. Quality & Quantity, 50(2), 767–790. https://doi.org/10.1007/s11135-015-0175-3

Mardani, A., Jusoh, A., & Zavadskas, E. K. (2015). Fuzzy multiple criteria decision-making techniques and applications – Two decades review from 1994 to 2014. Expert Systems with Applications, 42(8), 4126–4148. https://doi.org/10.1016/j.eswa.2015.01.003

Mishra, A. R., Singh, R. K., & Motwani, D. (2019). Multi-criteria assessment of cellular mobile telephone service providers using intuitionistic fuzzy WASPAS method with similarity measures. Granular Computing, 4(3), 511–529. https://doi.org/10.1007/s41066-018-0114-5

Mishra, A. R., Singh, R. K., & Motwani, D. (2020). Intuitionistic fuzzy divergence measure-based ELECTRE method for performance of cellular mobile telephone service providers. Neural Computing and Applications, 32(8), 3901–3921. https://doi.org/10.1007/s00521-018-3716-6

Mondal, K., & Pramanik, S. (2015). Intuitionistic fuzzy similarity measure based on tangent function and its application to multi-attribute decision making. Global Journal of Advanced Research, 2(2), 464–471.

Morozan, C., & Ciacu, N. (2012). Aspects of online and mobile marketing. Economy Transdisciplinarity Cognition, 15(2), 191–199.

Muthukumaran, G., Venkatachalapathy, V. S. K., & Pajaniradja, K. (2017). Some study on need for L6 in small scale industries. Global Journal of Finance and Management, 9(1), 15–22.

Nayagam, V. L. G., Muralikrishnan, S., & Sivaraman, G. (2011). Multi-criteria decision-making method based on interval-valued intuitionistic fuzzy sets. Expert Systems with Applications, 38(3), 1464–1467. https://doi.org/10.1016/j.eswa.2010.07.055

Ntepe, G., Bozdag, E., & Koc, T. (2013). The selection of technology forecasting method using a multi-criteria interval-valued intuitionistic fuzzy group decision making approach. Computers & Industrial Engineering, 65(2), 277–285. https://doi.org/10.1016/j.cie.2013.03.002

Ohta, R., Salomon, V. A. P., & Silva, M. B. (2020). Classical, fuzzy, hesitant fuzzy and intuitionistic fuzzy analytic hierarchy processes applied to industrial maintenance management. Journal of Intelligent and Fuzzy Systems, 38(1), 601–608. https://doi.org/10.3233/JIFS-179433

Önüt, S., Kara, S. S., & Isik, E. (2009). Long term supplier selection using a combined fuzzy MCDM approach: A case study for a telecommunication company. Expert Systems with Applications, 36(2), 3887–3895. https://doi.org/10.1016/j.eswa.2008.02.045

Patil, S. K., & Kant, R. (2014). Predicting the success of knowledge management adoption in supply chain using fuzzy DEMATEL and FMCDM approach. International Journal of Business Performance and Supply Chain Modelling, 6(1), 75–93. https://doi.org/10.1504/IJBPSCM.2014.058894

Pei, Z., & Zheng, L. (2012). A novel approach to multi-attribute decision making based on intuitionistic fuzzy sets. Expert Systems with Applications, 39(3), 2560–2566. https://doi.org/10.1016/j.eswa.2011.08.108

Pepper, M. P. J., & Spedding, T. A. (2010). The evolution of Lean Six Sigma. International Journal of Quality & Reliability Management, 27(2), 138–155. https://doi.org/10.1108/02656711011014276

Pereira, M. T., Bento, M. I., Ferreira, L. P., Sá, J. C., Silva, F. J. G., & Baptista, A. (2019). Using Six Sigma to analyse Customer Satisfaction at the product design and development stage. Procedia Manufacturing, 38, 1608–1614. https://doi.org/10.1016/j.promfg.2020.01.124

Pérez, I. J., Cabrerizo, F. J., & Herrera-Viedma, E. (2010). A mobile decision support system for dynamic group decision-making problems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 40(6), 1244–1256. https://doi.org/10.1109/TSMCA.2010.2046732

Pérez, I. J., Cabrerizo, F. J., & Herrera-Viedma, E. (2011). Group decision making problems in a linguistic and dynamic context. Expert Systems with Applications, 38(3), 1675–1688. https://doi.org/10.1016/j.eswa.2010.07.092

Prajogo, D. I. (2016). The strategic fit between innovation strategies and business environment in delivering business performance. International Journal of Production Economics, 171, 241–249. https://doi.org/10.1016/j.ijpe.2015.07.037

Psychogios, A. G., Atanasovski, J., & Tsironis, L. K. (2012). Lean Six Sigma in a service context: A multi-factor application approach in the telecommunications industry. International Journal of Quality & Reliability Management, 29(1), 122–139. https://doi.org/10.1108/02656711211190909

Rani, D., & Garg, H. (2017). Distance measures between the complex intuitionistic fuzzy sets and their applications to the decision-making process. International Journal for Uncertainty Quantification, 7(5), 423–439. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020356

Reim, W., Parida, V., & Örtqvist, D. (2015). Product–Service Systems (PSS) business models and tactics – a systematic literature review. Journal of Cleaner Production, 97, 61–75. https://doi.org/10.1016/j.jclepro.2014.07.003

Renaud, J., Fournier, F., Thiébault, J., Lanouette, R., Zaras, K., & Fonteix, C. (2003). Decision-making by rough sets applied to chemical and biochemical multicriteria process optimisation. IFAC Proceedings Volumes, 36(22), 215–220. https://doi.org/10.1016/S1474-6670(17)37720-0

Rodgers, B., Antony, J., Edgeman, R., & Cudney, E. A. (2021). Lean Six Sigma in the public sector: Yesterday, today and tomorrow. Total Quality Management and Business Excellence, 32(5–6), 528–540. https://doi.org/10.1080/14783363.2019.1599714

Roy, R., Goatman, M., & Khangura, K. (2009). User-centric design and Kansei Engineering. CIRP Journal of Manufacturing Science and Technology, 1(3), 172–178. https://doi.org/10.1016/j.cirpj.2008.10.007

Sadiq, R., & Tesfamariam, S. (2009). Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process (IF-AHP). Stochastic Environmental Research and Risk Assessment, 23(1), 75–91. https://doi.org/10.1007/s00477-007-0197-z

Saghaei, A., & Didehkhani, H. (2011). Developing an integrated model for the evaluation and selection of Six Sigma projects based on ANFIS and fuzzy goal programming. Expert Systems with Applications, 38(1), 721–728. https://doi.org/10.1016/j.eswa.2010.07.024

Salah, S., Rahim, A., & Carretero, J. A. (2010). The integration of Six Sigma and lean management. International Journal of Lean Six Sigma, 1(3), 249–274. https://doi.org/10.1108/20401461011075035

Shamsuzzaman, M., Alzeraif, M., Alsyouf, I., & Khoo, M. B. C. (2018). Using Lean Six Sigma to improve mobile order fulfilment process in a telecom service sector. Production Planning & Control, 29(4), 301–314. https://doi.org/10.1080/09537287.2018.1426132

Singh, S., & Garg, H. (2017). Distance measures between type-2 intuitionistic fuzzy sets and their application to multicriteria decision-making process. Applied Intelligence, 46(4), 788–799. https://doi.org/10.1007/s10489-016-0869-9

Snee, R. D., & Rodenbaugh Jr, W. F. (2002). The project selection process. Quality Progress, 35(9), 78–80.

Son, J., & Kim, S. B. (2017). Content-based filtering for recommendation systems using multiattribute networks. Expert Systems with Applications, 89, 404–412. https://doi.org/10.1016/j.eswa.2017.08.008

Su, C.-T., Chiang, T.-L., & Chiao, K. (2005). Optimizing the IC delamination quality via six-sigma approach. IEEE Transactions on Electronics Packaging Manufacturing, 28(3), 241–248. https://doi.org/10.1109/TEPM.2005.852233

Sunder, M., Ganesh, L. S., & Marathe, R. (2018). A morphological analysis of research literature on Lean Six Sigma for services. International Journal of Operations & Production Management, 38(1), 149–182. https://doi.org/10.1108/IJOPM-05-2016-0273

Szmidt, E. (2014). Distances and similarities in intuitionistic fuzzy sets. Springer. https://doi.org/10.1007/978-3-319-01640-5

Tjahjono, B., Ball, P., Vitanov, V. I., Scorzafave, C., Nogueira, J., Calleja, J., Minguet, M., Narasimha, L., Rivas, A., Srivastava, A., Srivastava, S., & Yadav, A. (2010). Six Sigma: A literature review. International Journal of Lean Six Sigma, 1(3), 216–233. https://doi.org/10.1108/20401461011075017

Uluskan, M. (2019). Analysis of Lean Six Sigma tools from a multidimensional perspective. Total Quality Management & Business Excellence, 30(9–10), 1167–1188. https://doi.org/10.1080/14783363.2017.1360134

Vijayan, S. C., Shalij, P. R., & Biju, P. L. (2021, March). Sustainable product development using balanced scorecard perspectives. IOP Conference Series: Materials Science and Engineering, 1114(1), 012060. https://doi.org/10.1088/1757-899X/1114/1/012060

Vink, J., Koskela-Huotari, K., Tronvoll, B., Edvardsson, B., & Wetter-Edman, K. (2021). Service ecosystem design: Propositions, process model, and future research agenda. Journal of Service Research, 24(2), 168–186. https://doi.org/10.1177/1094670520952537

Vinodh, S., & Swarnakar, V. (2015). Lean Six Sigma project selection using hybrid approach based on fuzzy DEMATEL–ANP–TOPSIS. International Journal of Lean Six Sigma, 6(4), 313–338. https://doi.org/10.1108/IJLSS-12-2014-0041

Vukasovi, D., Gligovi, D., Terzi, S., Stevi, Ž., & Macura, P. (2021). A novel fuzzy MCDM model for inventory management in order to increase business efficiency. Technological and Economic Development of Economy, 27(2), 386–401. https://doi.org/10.3846/tede.2021.14427

Wan, S., Xu, G., & Dong, J. (2020). An Atanassov intuitionistic fuzzy programming method for group decision making with interval-valued Atanassov intuitionistic fuzzy preference relations. Applied Soft Computing, 95, 106556. https://doi.org/10.1016/j.asoc.2020.106556

Wang, C.-N., Hsueh, M.-H., & Lin, D.-F. (2019). Hydrogen power plant site selection under fuzzy multicriteria decision-making (FMCDM) environment conditions. Symmetry, 11(4), 596. https://doi.org/10.3390/sym11040596

Wang, W., Yang, B., Zhao, W., & Xie, J. (2019). A deep matrix factorization method with missing not at random data for social recommendation. In T. Gedeon, K. Wong, & M. Lee (Eds,), Lecture notes in computer science: Vol. 11954. International Conference on Neural Information Processing (pp. 682–694). Springer, Cham. https://doi.org/10.1007/978-3-030-36711-4_57

Williams, A. L., Mellat-Parast, M., & Adams, S. G. (2012). Employee’s perception of the effect of six sigma projects on customer satisfaction. International Journal of Advanced Operations Management, 4(3), 177–194. https://doi.org/10.1504/IJAOM.2012.047635

Xu, Z. (2007a). Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems, 15(6), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678

Xu, Z. (2007b). Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making. Control and Decision, 2, 1–19.

Xu, Z. (2011a). Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators. Knowledge-Based Systems, 24(6), 749–760. https://doi.org/10.1016/j.knosys.2011.01.011

Xu, Z. (2011b). Intuitionistic fuzzy multiattribute decision making: An interactive method. IEEE Transactions on Fuzzy Systems, 20(3), 514–525. https://doi.org/10.1109/TFUZZ.2011.2177466

Xu, Z., & Yager, R. R. (2008). Dynamic intuitionistic fuzzy multi-attribute decision making. International Journal of Approximate Reasoning, 48(1), 246–262. https://doi.org/10.1016/j.ijar.2007.08.008

Xu, Z., & Zhang, S. (2019). An overview on the applications of the hesitant fuzzy sets in group decision-making: Theory, support and methods. Frontiers of Engineering Management, 6(2), 163–182. https://doi.org/10.1007/s42524-019-0017-4

Xu, Z., & Zhao, N. (2016). Information fusion for intuitionistic fuzzy decision making: An overview. Information Fusion, 28, 10–23. https://doi.org/10.1016/j.inffus.2015.07.001

Zhang, C., Liao, H., Luo, L., & Xu, Z. (2020). Distance-based consensus reaching process for group decision making with intuitionistic multiplicative preference relations. Applied Soft Computing, 88, 106045. https://doi.org/10.1016/j.asoc.2019.106045

Zhang, H., Zhou, R., Wang, J., & Chen, X. (2016). An FMCDM approach to purchasing decision-making based on cloud model and prospect theory in e-commerce. International Journal of Computational Intelligence Systems, 9(4), 676–688. https://doi.org/10.1080/18756891.2016.1204116

Zhang, Q., Irfan, M., Khattak, M. A. O., Zhu, X., & Hassan, M. (2012a). Lean Six Sigma: A literature review. Interdisciplinary Journal of Contemporary Research in Business, 3(10), 599–605.

Zhang, Q., Jiang, L., & Huang, Y. (2012b). An interval intuitionistic fuzzy decision approach for supplier selection in information technology service outsourcing. Journal of Information and Computational Science, 9(15), 4329–4336.

Zhang, W., Du, J., & Tian, X. (2018). Finding a promising venture capital project with TODIM under probabilistic hesitant fuzzy circumstance. Technological and Economic Development of Economy, 24(5), 2026–2044. https://doi.org/10.3846/tede.2018.5494

Zhao, H., Xu, Z., Ni, M., & Liu, S. (2010). Generalized aggregation operators for intuitionistic fuzzy sets. International Journal of Intelligent Systems, 25(1), 1–30. https://doi.org/10.1002/int.20386

Zhao, M., Wei, G., Chen, X., & Wei, Y. (2021). Intuitionistic fuzzy MABAC method based on cumulative prospect theory for multiple attribute group decision making. International Journal of Intelligent Systems, 36(11), 6337–6359. https://doi.org/10.1002/int.22552

Zindani, D., Maity, S. R., & Bhowmik, S. (2019). Fuzzy-EDAS (Evaluation based on Distance from Average Solution) for material selection problems. In R. Narayanan, S. Joshi, & U. Dixit (Eds.), Advances in computational methods in manufacturing (pp. 755–771). Springer. https://doi.org/10.1007/978-981-32-9072-3_63