Oil price shocks, economic policy uncertainty, and green finance: a case of China
Abstract
This study investigates the long- and short-run effects of crude oil price (COP) and economic policy uncertainty (EPU) on China’s green bond index (GBI) using the quantile autoregressive distributed lag model. The empirical results show that COP and EPU produce a significant positive and negative influence on GBI in the long-run across most quantiles, respectively, but their short-run counterparts are opposite direction and only significant in higher quantiles. Thus, major contributions are made accordingly and shown in the following aspects. The findings emphasise the importance of understanding how COP and EPU affect China’s green bond market for the first time. In addition, both the long- and short-run effects are captured, but long-run shocks primarily drive the green bond market. Finally, time- and quantile-varying analyses are adopted to explain the nexus between COP and EPU to GBI, which considers not only different states of the bond market but also events that occur in different time periods. Some detailed policies, such as a unified and effective green bond market, an early warning mechanism of oil price fluctuation, and prudent economic policy adjustments, are beneficial for stabilising the green finance market.
First published online 19 December 2022
Keyword : green bond index, crude oil price, economic policy uncertainty, quantile autoregressive distributed lag model
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Azhgaliyeva, D., Kapsalyamova, Z., & Mishra, R. (2022). Oil price shocks and green bonds: An empirical evidence. Energy Economics, 112, 106108. https://doi.org/10.1016/j.eneco.2022.106108
Baek, J. (2021). A new look at the oil prices and exchange rates nexus: A quantile cointegrating regression approach to South Korea. Applied Economics, 53(56), 6510–6521. https://doi.org/10.1080/00036846.2021.1946475
Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. The Quarterly Journal of Economics, 131(4), 1593–1636. https://doi.org/10.1093/qje/qjw024
Balcilar, M., Gupta, R., Wang, S., & Wohar, M. E. (2020). Oil price uncertainty and movements in the US government bond risk premia. North American Journal of Economics and Finance, 52, 101147. https://doi.org/10.1016/j.najef.2020.101147
Bondia, R., Ghosh, S., & Kanjilal, K. (2016). International crude oil prices and the stock prices of clean energy and technology companies: Evidence from non-linear cointegration tests with unknown structural breaks. Energy, 101, 558–565. https://doi.org/10.1016/j.energy.2016.02.031
Boutabba, M. A., & Rannou, Y. (2022). Investor strategies in the green bond market: The influence of liquidity risks, economic factors and clientele effects. International Review of Financial Analysis, 81, 102071. https://doi.org/10.1016/j.irfa.2022.102071
Broadstock, D. C., & Cheng, L. T. (2019). Time-varying relation between black and. green bond price benchmarks: Macroeconomic determinants for the first decade. Finance research letters, 29, 17–22. https://doi.org/10.1016/j.frl.2019.02.006
Chen, H., Xu, C., & Peng, Y. (2022). Time-frequency connectedness between energy and nonenergy commodity markets during COVID-19: Evidence from China. Resources Policy, 78, 102874. https://doi.org/10.1016/j.resourpol.2022.102874
Chen, W., Huang, Z., & Yi, Y. (2015). Is there a structural change in the persistence of WTI–Brent oil price spreads in the post-2010 period? Economic Modelling, 50, 64–71. https://doi.org/10.1016/j.econmod.2015.06.007
Cho, J. S., Kim, T., & Shin, Y. (2015). Quantile cointegration in the autoregressive distributed-lag modeling framework. Journal of Econometrics, 188(1), 281–301. https://doi.org/10.1016/j.jeconom.2015.05.003
Cristea, M. S., Pirtea, M. G., Suciu, M. C., & Noja, G. G. (2022). Workforce participation, ageing, and economic welfare: New empirical evidence on complex patterns across the European Union. Complexity, 2022, 7313452. https://doi.org/10.1155/2022/7313452
Devpura, N., & Narayan, P. K. (2020). Hourly oil price volatility: The role of COVID-19. Energy Research Letters, 1(2), 13683. https://doi.org/10.46557/001c.13683
Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057–1072. https://doi.org/10.2307/1912517
Dutta, A., Jana, R. K., & Das, D. (2020). Do green investments react to oil price shocks? Implications for sustainable development. Journal of Cleaner Production, 266, 121956. https://doi.org/10.1016/j.jclepro.2020.121956
Gu, K., Dong, F., Sun, H., & Zhou, Y. (2021). How economic policy uncertainty processes impact on inclusive green growth in emerging industrialized countries: A case study of China. Journal of Cleaner Production, 322, 128963. https://doi.org/10.1016/j.jclepro.2021.128963
Gudil, D. I., Sarwat, S., Sharif, A., & Jermsittiparsert, K. (2020). How oil prices, gold prices, uncertainty and risk impact Islamic and conventional stocks? Empirical evidence from QARDL technique. Resources Policy, 66, 101638. https://doi.org/10.1016/j.resourpol.2020.101638
Guo, Y., Chen, Y. H., Lo, K. L., & Mi, J. J. (2022). The influence of international crude oil price on the crude oil spot price in China. Procedia Computer Science, 199, 1144–1151.
https://doi.org/10.1016/j.procs.2022.01.145
Hau, L., Zhu, H., Sun, W., & Yu, K. (2022). Flight-to-quality or not? Evidence from China’s green bond and green equity markets during COVID-19 crisis. Applied Economics Letters. https://doi.org/10.1080/13504851.2022.2083059
He, X., Mishra, S., Aman, A., Shahbaz, M., Razzaq, A., & Sharif, A. (2021). The linkage between clean energy stocks and the fluctuations in oil price and financial stress in the US and Europe? Evidence from QARDL approach. Resources Policy, 72, 102021. https://doi.org/10.1016/j.resourpol.2021.102021
Hou, D., Chan, K. C., Dong, M., & Yao, Q. (2022). The impact of economic policy uncertainty on a firm’s green behavior: Evidence from China. Research in International Business and Finance, 59, 101544. https://doi.org/10.1016/j.ribaf.2021.101544
Hu, J., Wang, K., Su, C., & Umar, M. (2022). Oil price, green innovation and institutional pressure: A China’s perspective. Resources Policy, 78, 102788. https://doi.org/10.1016/j.resourpol.2022.102788
Huang, S., Sadiq, M., & Chien, F. (2021). The impact of natural resource rent, financial development, and urbanization on carbon emission. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-16818-7
Huang, T., & Yue, Q. (2020). How the game changer was generated? An analysis on the legal rules and development of China’s green bond market. International Environmental Agreement: Politics, Law and Economics, 20, 85–102. https://doi.org/10.1007/s10784-019-09460-9
Huang, W., Lan, C., Xu, Y., Zhang, Z., & Zeng, H. (2022). Does COVID-19 matter for systemic financial risks? Evidence from China’s financial and real estate sectors. Pacific-Basin Finance Journal, 74, 101819. https://doi.org/10.1016/j.pacfin.2022.101819
Ikram, M., Xia, W., Fareed, Z., Shahzad, U., & Rafique, M. Z. (2021). Exploring the nexus between economic complexity, economic growth and ecological footprint: Contextual evidences from Japan. Sustainable Energy Technologies and Assessments, 47, 101460. https://doi.org/10.1016/j.seta.2021.101460
Inchauspe, J., Ripple, R. D., & Trück, S. (2015). The dynamics of returns on renewable. Energy companies: A state-space approach. Energy Economics, 48, 325–335. https://doi.org/10.1016/j.eneco.2014.11.013
Ji, Q., Liu, B. Y., Nehler, H., & Uddin, G. S. (2018). Uncertainties and extreme risk spillover in the energy markets: A time-varying copula-based CoVaR approach. Energy Economics, 76, 115–126. https://doi.org/10.1016/j.eneco.2018.10.010
Jia, Z., Wen, S., & Lin, B. (2021). The effects and reacts of COVID-19 pandemic and international oil price on energy, economy, and environment in China. Applied Energy, 302, 117612. https://doi.org/10.1016/j.apenergy.2021.117612
Jiang, Y., Feng, Q., Mo, B., & Nie, H. (2020). Visiting the effects of oil price shocks on exchange rates: Quantile-on-quantile and causality-in-quantiles approaches. North American Journal of Economics and Finance, 52, 101161. https://doi.org/10.1016/j.najef.2020.101161
Kanamura, T. (2020). Are green bonds environmentally friendly and good performing assets? Energy Economics, 88, 104767. https://doi.org/10.1016/j.eneco.2020.104767
Kwiatkowski, D., Phillips, P., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationary against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1–3), 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y
Lee, C. C., Li, X., Yu, C. H., & Zhao, J. (2022a). The contribution of climate finance towards environmental sustainability: New global evidence. Energy Economics, 111, 106072. https://doi.org/10.1016/j.eneco.2022.106072
Lee, C. C., Xing, W., & Lee, C. C. (2022b). The impact of energy security on income inequality: The key role of economic development. Energy, 248, 123564. https://doi.org/10.1016/j.energy.2022.123564
Lee, C. C., Tang, H., & Li, D. (2022c). The roles of oil shocks and geopolitical. uncertainties on China’s green bond returns. Economic Analysis and Policy, 74, 494–505. https://doi.org/10.1016/j.eap.2022.03.008
Lee, C., Lee, C., & Li, Y. (2021). Oil price shocks, geopolitical risks, and green bond market dynamics. North American Journal of Economics and Finance, 55, 101309. https://doi.org/10.1016/j.najef.2020.101309
Li, Z., Kuo, T. H., Siao-Yun, W., & Vinh, L. T. (2022). Role of green finance, volatility and risk in promoting the investments in Renewable Energy Resources in the post-covid-19. Resources Policy, 76, 102563. https://doi.org/10.1016/j.resourpol.2022.102563
Liu, C., & Xiong, M. (2022). Green finance reform and corporate innovation: Evidence from China. Finance Research Letters, 48, 102993. https://doi.org/10.1016/j.frl.2022.102993
Liu, S. Q., Qi, H. J., & Wan, Y. L. (2022). Driving factors behind the development of China’s green bond market. Journal of Cleaner Production, 354, 131705. https://doi.org/10.1016/j.jclepro.2022.131705
Liu, X., Wang, E., & Cai, D. (2019). Green credit policy, property rights and debt financing: Quasi-natural experimental evidence from China. Finance Research Letters, 29, 129–135. https://doi.org/10.1016/j.frl.2019.03.014
Lv, C., Bian, B., Lee, C. C., & He, Z. (2021). Regional gap and the trend of green finance development in China. Energy Economics, 102, 105476. https://doi.org/10.1016/j.eneco.2021.105476
Naeem, M. A., Bouri, E., Costa, M. D., Naifar, N., & Shahzad, S. J. H. (2021). Energy markets and green bonds: A tail dependence analysis with time-varying optimal copulas and portfolio implications. Resources Policy, 74, 102418. https://doi.org/10.1016/j.resourpol.2021.102418
Ouyang, Z. S., Liu, M. T., Huang, S. S., & Yao, T. (2022). Does the source of oil price shocks matter for the systemic risk? Energy Economics, 109, 105958. https://doi.org/10.1016/j.eneco.2022.105958
Park, D., Park, J., & Ryu, D. (2020). Volatility spillovers between equity and green bond markets. Sustainability, 12(9), 3722. https://doi.org/10.3390/su12093722
Pham, L., & Cepni, O. (2022). Extreme directional spillovers between investor attention and green bond markets. International Review of Economics & Finance, 80, 186–210. https://doi.org/10.1016/j.iref.2022.02.069
Pham, L., & Nguyen, C. P. (2022). How do stock, oil, and economic policy uncertainty influence the green bond market? Finance Research Letters, 45, 102128. https://doi.org/10.1016/j.frl.2021.102128
Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346. https://doi.org/10.1093/biomet/75.2.335
Pirtea, M. G., Noja, G. G., Cristea, M., & Panait, M. (2021). Interplay between environmental, social and governance coordinates and the financial performance of agricultural companies. Agricultural Economics – Czech, 67, 479–490. https://doi.org/10.17221/286/2021-AGRICECON
Pirtea, M. G., Sipos, G. L., & Ionescu, A. (2019). Does corruption affects business innovation? Insights from emerging countries. Journal of Business Economics and Management, 20(4), 715–733.
https://doi.org/10.3846/jbem.2019.10160
Qiu, C., Colson, G., Escalante, C., & Wetzstein, M. (2012). Considering macroeconomic indicators in the food before fuel nexus. Energy Economics, 34(6), 2021–2028. https://doi.org/10.1016/j.eneco.2012.08.018
Reboredo, J. C. (2018). Green bond and financial markets: Co-movement, diversification and price spillover effects, Energy Economics, 74, 38–50. https://doi.org/10.1016/j.eneco.2018.05.030
Reboredo, J. C., Ugolini, A., & Aiube, F. A. L. (2020). Network connectedness of green bonds and asset classes. Energy Economics, 86, 104629. https://doi.org/10.1016/j.eneco.2019.104629
Ren, X., Shao, Q., & Zhong, R. (2020). Nexus between green finance, non-fossil energy use, and carbon intensity: Empirical evidence from China based on a vector error correction model. Journal of Cleaner Production, 277, 122844. https://doi.org/10.1016/j.jclepro.2020.122844
Shah, I. H., Hiles, C., & Morley, B. (2018). How do oil prices, macroeconomic factors and policies affect the market for renewable energy? Applied energy, 215, 87–97. https://doi.org/10.1016/j.apenergy.2018.01.084
Shahzad, S. J. H., Hurley, D., & Ferrer, R. (2021). U.S. stock prices and macroeconomic fundamentals: Fresh evidence using the quantile ARDL approach. International Journal of Finance & Economics, 26(3), 3569–3587. https://doi.org/10.1002/ijfe.1976
Shakya, S., Li, B., & Etienne, X. (2022). Shale revolution, oil and gas prices, and drilling activities in the United States. Energy Economics, 108, 105877. https://doi.org/10.1016/j.eneco.2022.105877
Shi, J., Yu, C., Li, Y., & Wang, T. (2022). Does green financial policy affect debt-financing cost of heavy-polluting enterprises? An empirical evidence based on Chinese pilot zones for green finance reform and innovations. Technological Forecasting and Social Change, 179, 121678. https://doi.org/10.1016/j.techfore.2022.121678
Su, C., Chen, Y., Hu, J., Chang, T., & Umar, M. (2023). Can the green bond market enter a new era under the fluctuation of oil price? Economic Research-Ekonomska Istraživanja, 36(1), 536–561. https://doi.org/10.1080/1331677X.2022.2077794
Su, C., Li, W., Umar, M., & Lobonţ, O. (2022). Can green credit reduce the emissions of pollutants? Economic Analysis and Policy, 74, 205–219. https://doi.org/10.1016/j.eap.2022.01.016
Su, C., Pang, L., Tao, R., Shao, X., & Umar, M. (2022c). Renewable energy and technological innovation: Which one is the winner in promoting net-zero emissions? Technological Forecasting and Social Change, 182, 121798. https://doi.org/10.1016/j.techfore.2022.121798
Su, C. W., Wang, X. Q., Tao, R., & Oana-Ramona, L. (2019). Do oil prices drive agricultural commodity prices? Further evidence in a global bio-energy context. Energy, 172, 691–701. https://doi.org/10.1016/j.energy.2019.02.028
Sun, C., Ding, D., Fang, X., Zhang, H., & Li, J. (2019). How do fossil energy prices affect the stock prices of new energy companies? Evidence from Divisia energy price index in China’s market. Energy, 169, 637–645. https://doi.org/10.1016/j.energy.2018.12.032
Sun, Y., Duru, O. A., Razzaq, A., & Dinca, M. S. (2021). The asymmetric effect eco-innovation and tourism towards carbon neutrality target in Turkey. Journal of Environmental Management, 299, 113653. https://doi.org/10.1016/j.jenvman.2021.113653
Tian, H., Long, S., & Li, Z. (2022). Asymmetric effects of climate policy uncertainty, infectious diseases-related uncertainty, crude oil volatility, and geopolitical risks on green bond prices. Finance Research Letters, 48, 103008. https://doi.org/10.1016/j.frl.2022.103008
Tolliver, C., Keeley, A. R., & Managi, S. (2020). Drivers of green bond market growth: The importance of Nationally Determined Contributions to the Paris Agreement and implications for sustainability. Journal of Cleaner Production, 244, 118643. https://doi.org/10.1016/j.jclepro.2019.118643
Wang, X., Li, J., & Ren, X. (2022a). Asymmetric causality of economic policy uncertainty and oil volatility index on time-varying nexus of the clean energy, carbon and green bond. International Review of Financial Analysis, 83, 102306. https://doi.org/10.1016/j.irfa.2022.102306
Wang, K. H., Liu, L., Li, X., & Oana-Ramona, L. (2022b). Do oil price shocks drive unemployment? Evidence from Russia and Canada. Energy, 253, 124107. https://doi.org/10.1016/j.energy.2022.124107
Wang, K., Zhao, Y., Jiang, C., & Li, Z. (2022c). Does green finance inspire sustainable development? Evidence from a global perspective. Economic Analysis and Policy, 75, 412–426. https://doi.org/10.1016/j.eap.2022.06.002
Wang, Z., Dong, Y., & Liu, A. (2022d). How does China’s stock market react to supply chain disruptions from COVID-19? International Review of Financial Analysis, 82, 102168. https://doi.org/10.1016/j.irfa.2022.102168
Wang, X., Luo, Y., Wang, Z., Xu, Y., & Wu, C. (2021). The impact of economic policy uncertainty on volatility of China’s financial stocks: An empirical analysis. Finance Research Letters, 39, 101650. https://doi.org/10.1016/j.frl.2020.101650
Wang, X., & Wang, Q. (2021). Research on the impact of green finance on the upgrading of China’s regional industrial structure from the perspective of sustainable development. Resources Policy, 74, 102436. https://doi.org/10.1016/j.resourpol.2021.102436
Wang, Z., Li, Y., & He, F. (2020). Asymmetric volatility spillovers between economic policy uncertainty and stock markets: Evidence from China. Research in International Business and Finance, 53, 101233. https://doi.org/10.1016/j.ribaf.2020.101233
Wen, X., Guo, Y., Wei, Y., & Huang, D. (2014). How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China. Energy Economics, 41, 63–75. https://doi.org/10.1016/j.eneco.2013.10.018
Wu, K., Zhu, J., Xu, M., & Yang, L. (2020). Can crude oil drive the co-movement in the international stock market? Evidence from partial wavelet coherence analysis. North American Journal of Economics and Finance, 53, 101194. https://doi.org/10.1016/j.najef.2020.101194
Yan, L., Wang, H., Athari, S. A., & Atif, F. (2022). Driving green bond market through energy prices, gold prices and green energy stocks: evidence from a non-linear approach. Economic Research-Ekonomska Istraživanja, 35(1), 6479–6499. https://doi.org/10.1080/1331677X.2022.2049977
Yang, Y., Su, X., & Yao, S. (2021). Nexus between green finance, fintech, and high-quality economic development: Empirical evidence from China. Resources Policy, 74, 102445. https://doi.org/10.1016/j.resourpol.2021.102445
Zhan, Z., Ali, L., Sarwat, S., Godil, D. I., Dinca, G., & Anser, M. K. (2021). A step towards environmental mitigation: Do tourism, renewable energy and institutions really matter? A QARDL approach. Science of the Total Environment, 778, 146209. https://doi.org/10.1016/j.scitotenv.2021.146209
Zhang, D. (2018). Energy finance: Background, concept, and recent developments. Emerging Markets Finance and Trade, 54(8), 1687–1692. https://doi.org/10.1080/1540496X.2018.1466524
Zhang, K., Li, Y., Qi, Y., & Shao, S. (2021a). Can green credit policy improve environmental quality? Evidence from China. Journal of Environmental Management, 298, 113445. https://doi.org/10.1016/j.jenvman.2021.113445
Zhang, F., Narayan, P. K., & Devpura, N. (2021b). Has COVID-19 changed the stock return-oil price predictability pattern? Financial Innovation, 7(1), 1–10. https://doi.org/10.1186/s40854-021-00277-7
Zhao, X., Meng, X., Zhou, Y., & Li, P. (2020). Policy inducement effect in energy efficiency: An empirical analysis of China. Energy, 211, 118726. https://doi.org/10.1016/j.energy.2020.118726