Share:


Sustainable food supply chain screening and relationship analysis with unknown criteria weight information

    Huchang Liao Affiliation
    ; Fan Liu Affiliation
    ; Yilu Long Affiliation
    ; Zhiying Zhang Affiliation
    ; Edmundas Kazimieras Zavadskas Affiliation

Abstract

Sustainable food supply chain management (SFSC) can control food loss and waste by reducing resource consumption and environmental pollution, thereby ensuring sustainable food consumption and production patterns. Scholars have investigated specific aspects or links in SFSC but rarely studied the sustainability evaluation and selection of a whole supply chain to provide management suggestions under uncertain decision-making environments. This paper presents a comprehensive multiple criteria decision-making method called the SMAA-ORESTE method for SFSC selection. To reduce experts’ efforts, the holistic acceptability index in the SMAA-2 method is used to screen inferior SFSCs from a large number of alternatives. Then, the ORESTE method is combined with the SMAA method to evaluate SFSCs under uncertain information. The ORESTE method can specifically analyze the relationship between alternatives, and the SMAA method can analyze alternatives with unknown criteria weights by Monte Carlo simulation. The proposed method ensures the robustness and credibility of obtained ranking results. An illustrative example validates the applicability and robustness of the proposed method in selecting SFSCs with unknown criteria weights.

Keyword : sustainable food supply chain, multiple criteria group decision-making, SMAA, ORESTE, food loss

How to Cite
Liao, H., Liu, F., Long, Y., Zhang, Z., & Zavadskas, E. K. (2024). Sustainable food supply chain screening and relationship analysis with unknown criteria weight information. Technological and Economic Development of Economy, 30(6), 1732–1768. https://doi.org/10.3846/tede.2024.22127
Published in Issue
Nov 6, 2024
Abstract Views
140
PDF Downloads
172
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Allaoui, H., Guo, Y. H., Choudhary, A., & Bloemhof, J. (2018). Sustainable agro-food supply chain design using two-stage hybrid multi-objective decision-making approach. Computers & Operations Research, 89, 369–384. https://doi.org/10.1016/j.cor.2016.10.012

Azadnia, A. H., Saman, M. Z. M., & Wong, K. Y. (2015). Sustainable supplier selection and order lot-sizing: An integrated multi-objective decision-making process. International Journal of Production Research, 53(2), 383–408. https://doi.org/10.1080/00207543.2014.935827

Azzi, A., Battini, D., Persona, A., & Sgarbossa, F. (2012). Packaging design: General framework and research agenda. Packaging Technology and Science, 25(8), 435–456. https://doi.org/10.1002/pts.993

Batista, L., Bourlakis, M., Smart, P., & Maull, R. (2018). In search of a circular supply chain archetype – a content-analysis-based literature review. Production Planning & Control, 29(6), 438–451. https://doi.org/10.1080/09537287.2017.1343502

Borcherding, K., Eppel, T., & von Winterfeldt, D. (1991). Comparison of weighting judgments in multiattribute utility measurement. Management Science, 37(12), 1603–1619. https://doi.org/10.1287/mnsc.37.12.1603

Brans, J. P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The PROMETHEE method. European Journal of Operational Research, 24(2), 228–238. https://doi.org/10.1016/0377-2217(86)90044-5

Cardoen, D., Joshi, P., Diels, L., Sarma, P. M., & Pant, D. (2015). Agriculture biomass in India: Part 2. Post-harvest losses, cost and environmental impacts. Resources Conservation and Recycling, 101, 143–153. https://doi.org/10.1016/j.resconrec.2015.06.002

Chauhan, A., Debnath, R. M., & Singh, S. P. (2018). Modelling the drivers for sustainable agri-food waste management. Benchmarking: An International Journal, 25(3), 981–993. https://doi.org/10.1108/BIJ-07-2017-0196

Chauhan, A., Kaur, H., Yadav, S., & Jakhar, S. K. (2020). A hybrid model for investigating and selecting a sustainable supply chain for agri-produce in India. Annals of Operations Research, 290, 621–642. https://doi.org/10.1007/s10479-019-03190-6

Chen, Y., Kilgour, D. M., & Hipel, K. W. (2008). A case-based distance method for screening in multiple-criteria decision aid. Omega, 36(3), 373–383. https://doi.org/10.1016/j.omega.2006.04.016

Cinelli, M., Kadziński, M., Gonzalez, M. Słowiński, R. (2020). How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy. Omega, 96, Article 102261. https://doi.org/10.1016/j.omega.2020.102261

De Leeneer, I. D., & Pastijn, H. (2002). Selecting land mine detection strategies by means of outranking MCDM techniques. European Journal of Operational Research, 139(2), 327–338. https://doi.org/10.1016/S0377-2217(01)00372-1

Delhaye, C., Teghem, J., & Kunsch, P. L. (1991). Application of the ORESTE method to a nuclear waste management problem. International Journal of Production Economics, 24(1–2), 29–39. https://doi.org/10.1016/0925-5273(91)90150-R

Giallanza, A., & Puma, G. L. (2020). Fuzzy green vehicle routing problem for designing a three echelons supply chain. Journal of Cleaner Production, 259, Article 120774. https://doi.org/10.1016/j.jclepro.2020.120774

Giannakis, M. & Papadopoulos, T. (2016). Supply chain sustainability: A risk management approach. International Journal of Production Economics, 171, 455–470. https://doi.org/10.1016/j.ijpe.2015.06.032

Golini, R., Moretto, A., Caniato, F., Caridi, M., Kalchschmidt, M. (2017). Developing sustainability in the Italian meat supply chain: An empirical investigation. International Journal of Production Research, 55(4), 1183–1209. https://doi.org/10.1080/00207543.2016.1234724

Govindan, K., Kadziński, M., & Sivakumar, R. (2017). Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain. Omega, 71, 129–145. https://doi.org/10.1016/j.omega.2016.10.004

Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2020). The ordinal input for cardinal output approach of non-compensatory composite indicators: The PROMETHEE scoring method. European Journal of Operational Research, 288(1), 225–246. https://doi.org/10.1016/j.ejor.2020.05.036

Grunert, K. G. (2005). Food quality and safety: Consumer perception and demand. European Review of Agricultural Economics, 32(3), 369–391. https://doi.org/10.1093/eurrag/jbi011

Gupta, R., & Shankar, R. (2016). Ranking of collusive behaviour in Indian agro-supply chain using interval 2-tuple linguistic TOPSIS method. Journal of Modelling in Management, 11(4), 949–966. https://doi.org/10.1108/JM2-03-2015-0006

Izadikhah, M., Saen, R. F., Ahmadi, K., Shamsi, M. (2020). How to use fuzzy screening system and data envelopment analysis for clustering sustainable suppliers? A case study in Iran. Journal of Enterprise Information Management, 34(1), 199–229. https://doi.org/10.1108/JEIM-09-2019-0262

Khan, S. A. R., Mathew, M., Dominic, P. D. D., & Umar, M. (2022). Evaluation and selection strategy for green supply chain using interval-valued q-rung orthopair fuzzy combinative distance-based assessment. Environment, Development and Sustainability, 24, 10633–10665. https://doi.org/10.1007/s10668-021-01876-1

Kumar, A., Mangla, S. K., Kumar, P. (2022). An integrated literature review on sustainable food supply chains: Exploring research themes and future directions. Science of The Total Environment, 821, Article 153411. https://doi.org/10.1016/j.scitotenv.2022.153411

Lahdelma, R., Hokkanen, J., & Salminen, P. (1998). SMAA – Stochastic multiobjective acceptability analysis. European Journal of Operational Research, 106(1), 137–143. https://doi.org/10.1016/S0377-2217(97)00163-X

Lahdelma, R., & Salminen, P. (2001). SMAA-2: Stochastic multicriteria acceptability analysis for group decision making. Operations Research, 49(3), 444–454. https://doi.org/10.1287/opre.49.3.444.11220

Lahdelma, R., & Salminen, P. (2002). Pseudo-criteria versus linear utility function in stochastic multi-criteria acceptability analysis. European Journal of Operational Research, 141(2), 454–469. https://doi.org/10.1016/S0377-2217(01)00276-4

Li, D., Wang, X. J., Chan, H. K., & Manzini, R. (2014). Sustainable food supply chain management. International Journal of Production Economics, 152, 1–8. https://doi.org/10.1016/j.ijpe.2014.04.003

Liao, H., Wu, X., Liang, X., Xu, J., & Francisco, H. (2018). A new hesitant fuzzy linguistic ORESTE method for hybrid multicriteria decision making. IEEE Transactions on Fuzzy Systems, 26(6), 3793–807. https://doi.org/10.1109/TFUZZ.2018.2849368

Long, Y. L., & Liao, H. C. (2021). A social participatory allocation network method with partial relations of alternatives and its application in sustainable food supply chain selection. Applied Soft Computing, 109, Article 107550. https://doi.org/10.1016/j.asoc.2021.107550

Long, Y., Liao, H., & Lev, B. (2023). Sustainable supply chain management: Definition, bibliometrics, applications, and future directions. In F. P. García ­Márquez &­ B. Lev (­­­Eds.), Sustainability: Vol. 333. International Series in Operations Research & Management Science (pp. 27–52). Springer. https://doi.org/10.1007/978-3-031-16620-4_3

Manzini, R., & Accorsi, R. (2013). The new conceptual framework for food supply chain assessment. Journal of Food Engineering, 115(2), 251–263. https://doi.org/10.1016/j.jfoodeng.2012.10.026

Miranda-Ackerman, M. A., Azzaro-Pantel, C., & Aguilar-Lasserre, A. A. (2017). A green supply chain network design framework for the processed food industry: Application to the orange juice agrofood cluster. Computers & Industrial Engineering, 109, 369–389. https://doi.org/10.1016/j.cie.2017.04.031

Mohseni, S., Baghizadeh, K., & Pahl, J. (2022). Evaluating barriers and drivers to sustainable food supply chains. Mathematical Problems in Engineering. https://doi.org/10.1155/2022/4486132

Oglethorpe, D. (2010). Optimising economic, environmental, and social objectives: A goal-programming approach in the food sector. Environment and Planning A: Economy and Space, 42(5), 1239–1254. https://doi.org/10.1068/a42292

Pastijn, H., & Leysen, J. (1989). Constructing an outranking relation with ORESTE. Mathematical & Computer Modelling, 12(10–11), 1255–1268. https://doi.org/10.1016/0895-7177(89)90367-1

Patidar, S., Shukla, A. C., & Sukhwani, V. K. (2021). Food supply chain management (FSCM): A structured literature review and future research agenda. Journal of Advances in Management Research, 19(2), 272–299. https://doi.org/10.1108/JAMR-04-2021-0143

Pelissari, R., Oliveira, M. C., Amor, S. B., Kandakoglu, A., & Helleno, A. L. (2020). SMAA methods and their applications: A literature review and future research directions. Annals of Operations Research, 293(2), 433–493. https://doi.org/10.1007/s10479-019-03151-z

Pullman, M. E., Maloni, M. J., Carter, C. R. (2009). Food for thought: Social versus environmental sustainability practices and performance outcomes. Journal of Supply Chain Management, 45(4), 38–54. https://doi.org/10.1111/j.1745-493X.2009.03175.x

Raut, R., Kharat, M., Kamble, S., & Kumar, C. S. (2018). Sustainable evaluation and selection of potential third-party logistics (3PL) providers: An integrated MCDM approach. Benchmarking, 25(1), 76–97. https://doi.org/10.1108/BIJ-05-2016-0065

Rezaei, J., Nispeling, T., Sarkis, J., & Tavasszy, L. (2016). A supplier selection life cycle approach integrating traditional and environmental criteria using the best worst method. Journal of Cleaner Production, 135, 577–588. https://doi.org/10.1016/j.jclepro.2016.06.125

Rezaei, J., Papakonstantinou, A., Tavasszy, L., Pesch, U., & Kana, A. (2019). Sustainable product-package design in a food supply chain: A multi-criteria life cycle approach. Packaging Technology and Science, 32(2), 85–101. https://doi.org/10.1002/pts.2418

Roubens, M. (1982). Preference relations on actions and criteria in multicriteria decision making. European Journal of Operational Research, 10(1), 51–55. https://doi.org/10.1016/0377-2217(82)90131-X

Roy, B. (1971). Problems and methods with multiple objective functions. Mathematical Programming, 1(1), 239–266. https://doi.org/10.1007/BF01584088

Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & Industrial Engineering, 140, Article 106231. https://doi.org/10.1016/j.cie.2019.106231

Sufiyan, M., Haleem, A., Khan, S., & Khan, M. I. (2019). Evaluating food supply chain performance using hybrid fuzzy MCDM technique. Sustainable Production and Consumption, 20, 40–57. https://doi.org/10.1016/j.spc.2019.03.004

Tidy, M., Wang, X., & Hall, M. (2016). The role of supplier relationship management in reducing greenhouse gas emissions from food supply chains: Supplier engagement in the UK supermarket sector. Journal of Cleaning Production, 112, 3294–3305. https://doi.org/10.1016/j.jclepro.2015.10.065

United Nations. (2021). Goal 12 – Responsible consumption and production. Ensure sustainable consumption and production patterns. In The sustainable development goals report 2021 (pp. 50–52). https://unstats.un.org/sdgs/report/2021/goal-12/

Validi, S., Bhattacharya, A., & Byrne, P. J. (2014). A case analysis of a sustainable food supply chain distribution system – A multi-objective approach. International Journal of Production Economics, 152, 71–87. https://doi.org/10.1016/j.ijpe.2014.02.003

Van Huylenbroeck, G. (1995). The conflict analysis method: Bridging the gap between ELECTRE, PROMETHEE and ORESTE. European Journal of Operational Research, 82(3), 490–502. https://doi.org/10.1016/0377-2217(95)98195-6

Wang, X., Gou, X., & Xu, Z. (2019). Assessment of traffic congestion with ORESTE method under double hierarchy hesitant fuzzy linguistic environment. Applied Soft Computing, 86, Article 105864. https://doi.org/10.1016/j.asoc.2019.105864

Wu, X. L. & Liao, H. C. (2018). An approach to quality function deployment based on probabilistic linguistic term sets and ORESTE method for multi-expert multi-criteria decision making. Information Fusion, 43, 13–26. https://doi.org/10.1016/j.inffus.2017.11.008

Yakovleva, N., Sarkis, J., & Sloan, T. (2012). Sustainable benchmarking of supply chains: The case of the food industry. International Journal of Production Research, 50(5), 1297–1317. https://doi.org/10.1080/00207543.2011.571926

Yazdani, M., Gonzalez, E. D. R. S., & Chatterjee, P. (2021). A multi-criteria decision-making framework for agriculture supply chain risk management under a circular economy context. Management Decision, 59(8), 1801–1826. https://doi.org/10.1108/MD-10-2018-1088

Yazdani, M., Pamucar, D., Chatterjee, P., & Torkayesh, A. E. (2022). A multi-tier sustainable food supplier selection model under uncertainty. Operations Management Research, 15(1–2), 116–145. https://doi.org/10.1007/s12063-021-00186-z

Zhang, C., Wu, X., Wu, D., Liao, H., Luo, L., & Herrera-Viedma, E. (2018). An intuitionistic multiplicative ORESTE method for patients’ prioritization of hospitalization. International Journal of Environmental Research and Public Health, 15(4), Article 777. https://doi.org/10.3390/ijerph15040777

Zhong, R., Xu, X., & Wang, L. (2017). Food supply chain management: Systems, implementations, and future research. Industrial Management & Data Systems, 117(9), 2085–2114. https://doi.org/10.1108/IMDS-09-2016-0391