Share:


An integrated fuzzy AHP/DEA approach for performance evaluation of territorial units in Turkey

Abstract

Due to the differences between regions and sub-regions in the countries, some problems come out especially in economic and social life. The issue of differences of regions has been widely implemented to evaluate the economic performance of Turkey in many disciplines. The objective of this paper is to evaluate the efficiency of 26 sub-regions of NUTS-2 classification using integration Fuzzy Analytic Hierarchy Process (FAHP) with Data Envelopment Analysis (DEA). The integrated FAHP/DEA method comprises two stages. In the first stage, linguistic terms are used to determine the decision makers’ opinion and are converted to quantitative forms by using FAHP methods. Subsequently, in the second stage, DEA method is applied to obtain relative efficiency of sub-regions in Turkey. The integrated FAHP/DEA method is illustrated with a real case study.

Keyword : Fuzzy Analytic Hierarchy Process, Data Envelopment Analysis, NUTS-2 classification

How to Cite
Çalik, A., Yapici Pehlivan, N., & Kahraman, C. (2018). An integrated fuzzy AHP/DEA approach for performance evaluation of territorial units in Turkey. Technological and Economic Development of Economy, 24(4), 1280-1302. https://doi.org/10.3846/20294913.2016.1230563
Published in Issue
Jun 29, 2018
Abstract Views
2402
PDF Downloads
1311
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abid, F.; Bahloul, S. 2011. Selected MENA countries’ attractiveness to G7 investors, Economic Modelling 28: 2197–2207. https://doi.org/10.1016/j.econmod.2011.06.013

Akadiri, P. O.; Olomolaiye, P. O.; Chinyio, E. A. 2013. Multi-criteria evaluation model for the selection of sustainable materials for building projects, Automation in Construction 30: 113–125. https://doi.org/10.1016/j.autcon.2012.10.004

Azadeh, A.; Ghaderi, S. F.; Izadbakhsh, H. 2008. Integration of DEA and AHP with computer simulation for railway system improvement and optimization, Applied Mathematics and Computation 195: 775–785. https://doi.org/10.1016/j.amc.2007.05.023

Azadeh, A.; Ghaderi, S. F.; Mirjalili, M.; Moghaddam, M. 2011. Integration of analytic hierarchy process and data envelopment analysis for assessment and optimization of personnel productivity in a large industrial bank, Expert Systems with Applications 38: 5212–5225. https://doi.org/10.1016/j.eswa.2010.10.038

Baležentis, A.; Baležentis, T. 2011. Assessing the efficiency of Lithuanian transport sector by applying the methods of multimoora and data envelopment analysis, Transport 26(3): 263–270. https://doi.org/10.3846/16484142.2011.621146

Banker, R. D.; Charnes, A.; Cooper, W. W. 1984. Some models for estimating technical and scale inefficiencies in data envelopment analysis, Management Science 30: 1078–1092. https://doi.org/10.1287/mnsc.30.9.1078

Baysal, M. E.; Kaya, İ.; Kahraman, C.; Sarucan, A.; Engin, O. 2015. A two phased fuzzy methodology for selection among municipal projects, Technological and Economic Development of Economy 21(3): 405–422. https://doi.org/10.3846/20294913.2014.909902

Brauers, W. K. M.; Kildienė, S.; Zavadskas, E. K.; Kaklauskas, A. 2013. The construction sector in twenty European countries during the recession 2008–2009 – country ranking by MULTIMOORA, International Journal of Strategic Property Management 17: 58–78. https://doi.org/10.3846/1648715X.2013.775194

Buckley, J. J. 1985. Fuzzy hierarchical analysis, Fuzzy Sets and Systems 17: 233–247. https://doi.org/10.1016/0165-0114(85)90090-9

Büyüközkan, G.; Feyzioğlu, O.; Nebol, E. 2008. Selection of the strategic alliance partner in logistics value chain, International Journal of Production Economics 113: 148–158. https://doi.org/10.1016/j.ijpe.2007.01.016

Calabrese, A.; Costa, R.; Menichini, T. 2013. Using Fuzzy AHP to manage Intellectual Capital assets: an application to the ICT service industry, Expert Systems with Applications 40(9): 3747–3755. https://doi.org/10.1016/j.eswa.2012.12.081

Çalık, A. 2012. Measurement of investment efficiency of regions in Turkey via fuzzy analytical hierarchy process/data envelopment analysis in Turkish: Bulanık Analitik Hiyerarşi Süreci/Veri Zarflama Analizi ile Türkiye’de Bölgelerin Yatirim Etkinliğinin Ölçülmesi. MSc, Selçuk University.

Camanho, A. S.; Dyson, R. G. 2005. Cost efficiency measurement with price uncertainty: a DEA application to bank branch assessments, European Journal of Operational Research 161: 432–446. https://doi.org/10.1016/j.ejor.2003.07.018

Celik, E.; Gul, M.; Aydin, N.; Gumus, A. T.; Guneri, A. F. 2015. A comprehensive review of multi criteria decision making approaches based on interval type-2 fuzzy sets, Knowledge-Based Systems 85: 329–341. https://doi.org/10.1016/j.knosys.2015.06.004

Chang, D.-Y. 1996. Applications of the extent analysis method on fuzzy AHP, European Journal of Operational Research 95: 649–655. https://doi.org/10.1016/0377-2217(95)00300-2

Charnes, A.; Cooper, W. W.; Rhodes, E. 1978. Measuring the efficiency of decision making units, European Journal of Operational Research 2: 429–444. https://doi.org/10.1016/0377-2217(78)90138-8

Che, Z. H.; Wang, H. S.; Chuang, C.-L. 2010. A fuzzy AHP and DEA approach for making bank loan decisions for small and medium enterprises in Taiwan, Expert Systems with Applications 37: 7189–7199. https://doi.org/10.1016/j.eswa.2010.04.010

Chen, X.; Skully, M.; Brown, K. 2005. Banking efficiency in China: application of DEA to pre- and post-deregulation eras: 1993–2000, China Economic Review 16: 229–245. https://doi.org/10.1016/j.chieco.2005.02.001

CIA. 2010. The world factbook available [online], [cited 20 February 2013]. Available from Internet: https://www.cia.gov/library/publications/download/download-2010

Cooper, W. W.; Seiford, L. M.; Tone, K. 2000. Data envelopment analysis: a comprehensive text with models, applications, references, and DEA-Solver software. Kluwer Academic.

Cooper, W. W.; Seiford, L. M.; Zhu, J. 2004. Handbook on data envelopment analysis. Springer. https://doi.org/10.1007/b105307

Deveci, M.; Demirel, N. Ç.; John, R.; Özcan, E. 2015. Fuzzy multi-criteria decision making for carbon dioxide geological storage in Turkey, Journal of Natural Gas Science and Engineering 27(2): 692–705. https://doi.org/10.1016/j.jngse.2015.09.004

Do, Q. H.; Chen, J.-F. 2014. A hybrid fuzzy AHP-DEA approach for assessing university performance, WSEAS Transactions on Business & Economic 11: 386–397.

Durán, O. 2011. Computer-aided maintenance management systems selection based on a fuzzy AHP approach, Advances in Engineering Software 42: 821–829. https://doi.org/10.1016/j.advengsoft.2011.05.023

Düzakın, E.; Düzakın, H. 2007. Measuring the performance of manufacturing firms with super slacks based model of data envelopment analysis: an application of 500 major industrial enterprises in Turkey, European Journal of Operational Research 182: 1412–1432. https://doi.org/10.1016/j.ejor.2006.09.036

Ecer, F. 2014. A hybrid banking websites quality evaluation model using AHP and COPRAS-G: a Turkey case, Technological and Economic Development of Economy 20(4): 758–782. https://doi.org/10.3846/20294913.2014.915596

Erol, Ö.; Kılkış, B. 2012. An energy source policy assessment using analytical hierarchy process, Energy Conversion and Management 63: 245–252. https://doi.org/10.1016/j.enconman.2012.01.040

Ertay, T.; Ruan, D.; Tuzkaya, U. R. 2006. Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems, Information Sciences 176: 237–262. https://doi.org/10.1016/j.ins.2004.12.001

Gao, L.; Hailu, A. 2012. Ranking management strategies with complex outcomes: an AHP-fuzzy evaluation of recreational fishing using an integrated agent-based model of a coral reef ecosystem, Environmental Modelling & Software 31: 3–18. https://doi.org/10.1016/j.envsoft.2011.12.002

Giokas, D. I.; Pentzaropoulos, G. C. 2008. Efficiency ranking of the OECD member states in the area of telecommunications: a composite AHP/DEA study, Telecommunications Policy 32: 672–685. https://doi.org/10.1016/j.telpol.2008.07.007

Govindan, K.; Khodaverdi, R.; Jafarian, A. 2013. A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach, Journal of Cleaner Production 47: 345–354. https://doi.org/10.1016/j.jclepro.2012.04.014

Ho, W. 2008. Integrated analytic hierarchy process and its applications – a literature review, European Journal of Operational Research 186: 211–228. https://doi.org/10.1016/j.ejor.2007.01.004

Johnes, J. 2006. Measuring teaching efficiency in higher education: an application of data envelopment analysis to economics graduates from UK Universities 1993, European Journal of Operational Research 174: 443–456. https://doi.org/10.1016/j.ejor.2005.02.044

Kahraman, C. 2008. Fuzzy multi-criteria decision making: theory and applications with recent developments. Springer US. https://doi.org/10.1007/978-0-387-76813-7

Kahraman, C.; Ertay, T.; Büyüközkan, G. 2006. A fuzzy optimization model for QFD planning process using analytic network approach, European Journal of Operational Research 171: 390–411. https://doi.org/10.1016/j.ejor.2004.09.016

Kahraman, C.; Onar, S. C.; Oztaysi, B. 2015. Fuzzy multicriteria decision-making: a literature review, International Journal of Computational Intelligence Systems 8: 637–666. https://doi.org/10.1080/18756891.2015.1046325

Kahraman, C.; Suder, A.; Cebi, S. 2013. Fuzzy multi-criteria and multi-experts evaluation of government investments in higher education: the case of Turkey, Technological and Economic Development of Economy 19: 549–569. https://doi.org/10.3846/20294913.2013.837110

Kaya, T.; Kahraman, C. 2011. Fuzzy multiple criteria forestry decision making based on an integrated VIKOR and AHP approach, Expert Systems with Applications 38: 7326–7333. https://doi.org/10.1016/j.eswa.2010.12.003

Köksal, C. D.; Aksu, A. A. 2007. Efficiency evaluation of A-group travel agencies with data envelopment analysis (DEA): a case study in the Antalya region, Turkey, Tourism Management 28: 830–834. https://doi.org/10.1016/j.tourman.2006.05.013

Korpela, J.; Lehmusvaara, A.; Nisonen, J. 2007. Warehouse operator selection by combining AHP and DEA methodologies, International Journal of Production Economics 108: 135–142. https://doi.org/10.1016/j.ijpe.2006.12.046

Kou, M.; Chen, K.; Wang, S.; Shao, Y. 2016. Measuring efficiencies of multi-period and multi-division systems associated with DEA: an application to OECD countries’ national innovation systems, Expert Systems with Applications 46: 494–510. https://doi.org/10.1016/j.eswa.2015.10.032

Kumar, A.; Shankar, R.; Debnath, R. M. 2015. Analyzing customer preference and measuring relative efficiency in telecom sector: a hybrid fuzzy AHP/DEA study, Telematics and Informatics 32: 447–462. https://doi.org/10.1016/j.tele.2014.10.003

Lee, S. K.; Mogi, G.; Hui, K. S. 2013. A fuzzy analytic hierarchy process (AHP)/data envelopment analysis (DEA) hybrid model for efficiently allocating energy R&D resources: in the case of energy technologies against high oil prices, Renewable and Sustainable Energy Reviews 21: 347–355. https://doi.org/10.1016/j.rser.2012.12.067

Lee, S. K.; Mogi, G.; Lee, S. K.; Hui, K. S.; Kim, J. W. 2010. Econometric analysis of the R&D performance in the national hydrogen energy technology development for measuring relative efficiency: the fuzzy AHP/DEA integrated model approach, International Journal of Hydrogen Energy 35: 2236–2246. https://doi.org/10.1016/j.ijhydene.2010.01.009

Lee, S. K.; Mogi, G.; Li, Z.; Hui, K. S.; Lee, S. K.; Hui, K. N.; Park, S. Y.; Ha, Y. J.; Kim, J. W. 2011. Measuring the relative efficiency of hydrogen energy technologies for implementing the hydrogen economy: an integrated fuzzy AHP/DEA approach, International Journal of Hydrogen Energy 36: 12655–12663. https://doi.org/10.1016/j.ijhydene.2011.06.135

Lin, C.-T.; Lee, C.; Chen, W.-Y. 2009. Using fuzzy analytic hierarchy process to evaluate service performance of a travel intermediary, The Service Industries Journal 29: 281–296. https://doi.org/10.1080/02642060701846762

Lin, M.-I.; Lee, Y.-D.; Ho, T.-N. 2011. Applying integrated DEA/AHP to evaluate the economic performance of local governments in China, European Journal of Operational Research 209: 129–140. https://doi.org/10.1016/j.ejor.2010.08.006

Liou, J. J. H.; Tzeng, G.-H. 2012. Comments on “Multiple criteria decision making (MCDM) methods in economics: an overview”, Technological and Economic Development of Economy 18(4): 672–695. https://doi.org/10.3846/20294913.2012.753489

Liu, C.-H.; Tzeng, G.-H.; Lee, M.-H. 2012. Improving tourism policy implementation – the use of hybrid MCDM models, Tourism Management 33: 413–426. https://doi.org/10.1016/j.tourman.2011.05.002

Mardani, A.; Jusoh, A.; Md Nor, K.; Khalifah, Z.; Zakwan, N.; Valipour, A. 2015. Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014, Economic Research-Ekonomska Istraživanja 28: 516–571. https://doi.org/10.1080/1331677X.2015.1075139

Meng, F. Y.; Zhou, P.; Zhou, D. Q.; Bai, Y. 2014. Inefficiency and congestion assessment of mix energy consumption in 16 APEC countries by using DEA window analysis, Energy Procedia 61: 2518–2523. https://doi.org/10.1016/j.egypro.2014.12.036

Mikhailov, L. 2002. Fuzzy analytical approach to partnership selection in formation of virtual enterprises, Omega 30: 393–401. https://doi.org/10.1016/S0305-0483(02)00052-X

Mikhailov, L. 2003. Deriving priorities from fuzzy pairwise comparison judgements, Fuzzy Sets and Systems 134: 365–385. https://doi.org/10.1016/S0165-0114(02)00383-4

Najafi, A.; Karimpour, M. H.; Ghaderi, M. 2014. Application of fuzzy AHP method to IOCG prospectivity mapping: a case study in Taherabad prospecting area, eastern Iran, International Journal of Applied Earth Observation and Geoinformation 33: 142–154. https://doi.org/10.1016/j.jag.2014.05.003

Nazarko, J.; Šaparauskas, J. 2014. Application of DEA method in efficiency evaluation of public higher education institutions, Technological and Economic Development of Economy 20(1): 25–44. https://doi.org/10.3846/20294913.2014.837116

Pan, N.-F. 2008. Fuzzy AHP approach for selecting the suitable bridge construction method, Automation in Construction 17: 958–965. https://doi.org/10.1016/j.autcon.2008.03.005

Ramanathan, R. 2006a. Data envelopment analysis for weight derivation and aggregation in the analytic hierarchy process, Computers & Operations Research 33: 1289–1307. https://doi.org/10.1016/j.cor.2004.09.020

Ramanathan, R. 2006b. Evaluating the comparative performance of countries of the Middle East and North Africa: a DEA application, Socio-Economic Planning Sciences 40: 156–167. https://doi.org/10.1016/j.seps.2004.10.002

Saaty, T. L. 1980. The analytic hierarchy process: planning, priority setting, resource allocation. McGrawHill.

Saen, R. F.; Memariani, A.; Lotfi, F. H. 2005. Determining relative efficiency of slightly non-homogeneous decision making units by data envelopment analysis: a case study in IROST, Applied Mathematics and Computation 165: 313–328. https://doi.org/10.1016/j.amc.2004.04.050

Sarica, K.; Or, I. 2007. Efficiency assessment of Turkish power plants using data envelopment analysis, Energy 32: 1484–1499. https://doi.org/10.1016/j.energy.2006.10.016

Sevkli, M.; Lenny Koh, S. C.; Zaim, S.; Demirbag, M.; Tatoglu, E. 2007. An application of data envelopment analytic hierarchy process for supplier selection: a case study of BEKO in Turkey, International Journal of Production Research 45: 1973–2003. https://doi.org/10.1080/00207540600957399

Shafer, S. M.; Byrd, T. A. 2000. A framework for measuring the efficiency of organizational investments in information technology using data envelopment analysis, Omega 28: 125–141. https://doi.org/10.1016/S0305-0483(99)00039-0

Shaw, K.; Shankar, R.; Yadav, S. S.; Thakur, L. S. 2012. Supplier selection using fuzzy AHP and fuzzy multi-objective linear programming for developing low carbon supply chain, Expert Systems with Applications 39: 8182–8192. https://doi.org/10.1016/j.eswa.2012.01.149

Sinuany-Stern, Z.; Mehrez, A.; Hadad, Y. 2000. An AHP/DEA methodology for ranking decision making units, International Transactions in Operational Research 7: 109–124. https://doi.org/10.1111/j.1475-3995.2000.tb00189.x

Sözen, A.; Alp, İ.; Özdemir, A. 2010. Assessment of operational and environmental performance of the thermal power plants in Turkey by using data envelopment analysis, Energy Policy 38: 6194–6203. https://doi.org/10.1016/j.enpol.2010.06.005

Sun, J. H.; Hu, J.; Yan, J. M.; Liu, Z.; Shi, Y. R. 2012. Regional environmental performance evaluation: a case of western regions in China, Energy Procedia 16(Part A): 377–382. https://doi.org/10.1016/j.egypro.2012.01.062

Tansel Iç, Y.; Yurdakul, M.; Dengiz, B. 2013. Development of a decision support system for robot selection, Robotics and Computer-Integrated Manufacturing 29: 142–157. https://doi.org/10.1016/j.rcim.2012.11.008

Taylan, O.; Bafail, A. O.; Abdulaal, R. M. S.; Kabli, M. R. 2014. Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies, Applied Soft Computing 17: 105–116. https://doi.org/10.1016/j.asoc.2014.01.003

Thokala, P.; Duenas, A. 2012. Multiple criteria decision analysis for health technology assessment, Value in Health 15: 1172–1181. https://doi.org/10.1016/j.jval.2012.06.015

Tseng, Y.-F.; Lee, T.-Z. 2009. Comparing appropriate decision support of human resource practices on organizational performance with DEA/AHP model, Expert Systems with Applications 36: 6548–6558. https://doi.org/10.1016/j.eswa.2008.07.066

Tzeng, G. H.; Huang, J. J. 2011. Multiple attribute decision making: methods and applications. Taylor & Francis.

Vaidya, O. S.; Kumar, S. 2006. Analytic hierarchy process: an overview of applications, European Journal of Operational Research 169: 1–29. https://doi.org/10.1016/j.ejor.2004.04.028

Van Laarhoven, P. J. M.; Pedrycz, W. 1983. A fuzzy extension of Saaty’s priority theory, Fuzzy Sets and Systems 11: 229–241. https://doi.org/10.1016/S0165-0114(83)80082-7

Vlontzos, G.; Niavis, S.; Manos, B. 2014. A DEA approach for estimating the agricultural energy and environmental efficiency of EU countries, Renewable and Sustainable Energy Reviews 40: 91–96. https://doi.org/10.1016/j.rser.2014.07.153

Wang, K.; Yu, S.; Zhang, W. 2013. China’s regional energy and environmental efficiency: a DEA window analysis based dynamic evaluation, Mathematical and Computer Modelling 58: 1117–1127. https://doi.org/10.1016/j.mcm.2011.11.067

Wang, Y.-M.; Liu, J.; Elhag, T. M. S. 2008. An integrated AHP–DEA methodology for bridge risk assessment, Computers & Industrial Engineering 54: 513–525. https://doi.org/10.1016/j.cie.2007.09.002

WIKIPEDIA. 2014. Economy of Turkey [online], [cited 15 February 2014]. Available from Internet: https://en.wikipedia.org/wiki/Economy_of_Turkey

WIKIPEDIA. 2015. Nomenclature of territorial units for statistics [online], [cited 01 July 2014]. Available from Internet: http://en.wikipedia.org/wiki/Nomenclature_of_Territorial_Units_for_Statistics

Yang, G.; Ahlgren, P.; Yang, L.; Rousseau, R.; Ding, J. 2016. Using multi-level frontiers in DEA models to grade countries/territories, Journal of Informetrics 10: 238–253. https://doi.org/10.1016/j.joi.2016.01.008

Yang, T.; Kuo, C. 2003. A hierarchical AHP/DEA methodology for the facilities layout design problem, European Journal of Operational Research 147: 128–136. https://doi.org/10.1016/S0377-2217(02)00251-5

Zavadskas, E. K.; Skibniewski, M. J.; Antucheviciene, J. 2014a. Performance analysis of Civil Engineering Journals based on the Web of Science® database, Archives of Civil and Mechanical Engineering 14: 519–527. https://doi.org/10.1016/j.acme.2014.05.008

Zavadskas, E. K.; Turskis, Z. 2011. Multiple criteria decision making (MCDM) methods in economics: an overview, Technological and Economic Development of Economy 17: 397–427. https://doi.org/10.3846/20294913.2011.593291

Zavadskas, E. K.; Turskis, Z.; Kildienė, S. 2014b. State of art surveys of overviews on MCDM/MADM methods, Technological and Economic Development of Economy 20(1): 165–179. https://doi.org/10.3846/20294913.2014.892037